Bahrain Medical Bulletin, Vol.25, No. 2, June 2003

Serum Lactate Dehydrogenase (LDH) Activity in Children with Malignant Diseases

Emad A Al-Saadoon, MRCP (Pead)* Lamia M Al-Naama, PhD** Janan K Hassan, CABP***

Objective: The measurement of the level of LDH activity in the serum was performed on children with different types of malignant disease and relation between LDH levels and response to chemotherapy was investigated.

Method: Serum lactic dehydroygnase (LDH) levels were measured at diagnosis in 53 patients with different types of malignant diseases and in 37 healthy children matched for age and sex as controls.

Result: The mean LDH level was significantly higher in acute lymphoblastic leukemia (ALL) (P<0.001) as compared to other groups of malignancy. Higher LDH levels in ALL were associated with high leukocyte counts and blast cells (r=0.46, P<0.04, and r=0.84, P<0.001) respectively. A significantly reduced level of LDH was observed in ALL only after induction of chemotherapy (P<0.01). In solid tumors however, specially lymphoma (NHL, Hodgkin's), high LDH levels correlated with extent of tumor mass or stage of disease.

Conclusion: Early measurement of serum LDH could be useful in identifying response to chemotherapy so it is important to determine the prognostic value of this biological marker.

Bahrain Med Bull 2003;25(2):71-73.

Lactic dehydrogenase (LDH), a pyridine-linked enzyme found in virtually all animal and human tissues, functions primarily in the metabolism of glucose, catalyzing the reduction of free pyruvate to lactate during the last step of glycolysis, as well as the conversion of lactate to pyruvate during gluconeogenesis. Its concentration is highest in liver followed in descending order in skeletal muscle, heart and kidney¹. Malignant cells have a distinctive type of

* Prof & Dean Department of Paediatrics
** Prof & Head Department of Biochemistry
***Assist Professor Department of Paediatrics College of Medicine University of Basrah Basrah, Iraq.

metabolism in which the glycolytic sequence and the tricarboxylic acid cycle are poorly integrated, hence the cells tends to utilize from five to ten times as much glucose as do normal tissues, converting most of it into lactate². Whether the increased serum levels of LDH commonly found in cancer patients reflect greater production and release of the enzyme by malignant cells², is not clear. Lactic dehydrogenase (LDH) exists in many different cell systems and subsequent to tissue or cell damage, serum LDH levels may be elevated. A relationship between neoplasia and increased LDH levels has been reported by many worker's in both human and animal tumors^{3,4}. Elevated LDH levels are encountered in neoplastic tissue as well as in the serum of patients with a variety of epithelial tumors. High levels of serum LDH have been observed in patients with solid tumors, leukemia, diffuse symptomatic lymphoma, (in non-Hodgkin's Lymphoma, particularly Burkett's lymphoma)^{5,6}, small cell lung cancer⁷ and testicular neoplasm. LDH appears to have a good correlation with disease activity and tumor mass⁸⁻¹⁰. In osteosarcoma the serum lactate dehydrogenase may be elevated in about 30% of patients even without metastases and may be a useful marker for response to treatment but in Ewing's sarcoma an elevated LDH at diagnosis appears to correlate with poor outlook¹¹.

In this study the measurement of the level of LDH activity in the serum was performed on children with different types of malignant disease and relation between LDH levels and response to chemotherapy was investigated.

METHODS

This study was conducted from May 2000 till February 2001 on a total of 53 patients with recently diagnosed malignancies who were admitted to Maternal and Child Hospital. The included cases were; acute leukemia 28 (24 lymphoblastic (ALL) and 4 myloblastic (AML)), two cases were chronic mylocytic leukemia (CML), lymphoma 12 (6 Non-Hodgkin's lymphoma (NHL) and 6 Hodgkin's lymphoma (HL)), Rabdomyosarcoma 4, Neuroblastoma 2, Ewing sarcoma 2, brain tumor 1, Retinoblastoma 1, and Teratoma 1. Their ages ranged from 1 to 15 years. Thirty seven, apparently healthy children matched for age and gender served as controls.

All patients had a comprehensive diagnostic work up for typing of leukemia and staging for other malignances. Those patients were receiving chemotherapeutic treatment in a uniform manner according to their types of malignancy. Serum LDH levels were determined at the time of the diagnosis and after four weeks of starting chemotherapy by using kits from Randox, U.K.

Results are expressed as mean \pm SD. Differences between malignant and control groups were assessed using the Student's t test. Differences between variables in the different groups were assessed using one-way analysis of variance (ANOVA). Regression and correlation analyses between variables were performed by calculating Pearson's correlation coefficients (r). Differences in the number of subjects with and without malignancy were investigated using chi square (X²) with Yates's correction. P values of > 0.05 were considered not significant.

RESULTS

Age and sex distribution of all malignant cases and control groups are summarized in Table 1. Statistically, there was no significant difference between both groups. The serum LDH levels in all cases of malignant diseases and the control group are presented in Table 2. The mean serum level of LDH was: acute lymphoblastic leukemia, ALL (562 \pm 161 IU/L), AML (375 \pm 96 IU/L), CML (418 \pm 11 IU/L), lymphoma; NHL (363 \pm 96 IU/L), Hodgkin lymphoma $(283 \pm 53 \text{ IU/L})$, Rhahdomysarcoma $(343 \pm 47 \text{ IU/L})$, neuroblastoma (330 ± 93) IU/L), Ewing's sarcoma (178 \pm 60 IU/L) while in the control group it was (192 \pm 58 IU/L). Data in most malignant cases demonstrated an extremely significant increase in serum LDH activity as compared to the non – malignant or the control group (p < 0.0001). Within the malignant groups, the highest LDH activity was observed in ALL cases, while the lowest was in Ewing's sarcoma. The elevated LDH level in ALL cases was found highly significant as compared to Hodgkin's lymphoma and Ewing's sarcoma (p<0.001). Whereas, it was only significant compared to NHL and Rhahdomysarcoma (p < 0.01), and neuroblastoma (p < 0.05). However, it was insignificant compared to the remainder of malignant cases.

Age	Control (37)		Patients (53)		
(Year)	Male	Female	Male	Female	
<1	1		1	1	
1-5	6	6	15	8	
>5	11	13	15	13	
Total	18	19	31	22	

	1	C I	
Table 1. Age and s	ev distribution	of case and	I control groung
	CA UISUIDUUUU	or case and	

Table 2. Mean level of serum LDH in different types of malignancy and control

Type of Malignancy	No. of	Serum LD	Serum LDH Activity	
	Patients	()	IU/L)	
		Range	Mean \pm SD	
ALL	24	320-780	562 ± 161	
AML	4	325-460	375 ± 96	
CML	2	410-425	418 ± 11	
Lymphoma	6	200-475	$363 \pm 94^{**}$	
Hodgkin's	6	220-325	$288 \pm 53^{***}$	
Rhabdomyosarcoma	4	280-390	$343 \pm 47*$	
Neuroblastoma	2	260-400	330 ± 99	
Ewing's sarcoma	2	135-220	$178 \pm 60^{**}$	
Brain tumor	1	250	250	
Retinoblastoma	1	310	310	
Teratoma	1	390	390	
Controls	37	110-350	$192 \pm 56^{***}$	

ALL cases versus other malignant cases and controls *P < 0.05. **P < 0.01. **P < 0.001

Pearson correlation analysis of serum LDH among children with acute lymphoblastic leukemia (ALL), showed a highly significant correlation between LDH levels and white blood cell counts (r = 0.46, p < 0.04) and the number of blast cells (r = 0.8, p < 0.001) as compared to similar analysis among children with AML or CML (Table 3). However, there was no relationship between LDH levels and WBC or blast cells in any of the other malignant groups.

Table 3. Correlation of LDH activity with WBC and blast cell
in children with different types of leukemia

Types of leukemia	WBC count	Blast cell
	R P	R P
ALL	0.46 < 0.04	0.8 < 0.001
AML	0.6 NS	0.6 NS
CML	0.5 NS	0.3 NS

Table 4 showed the activity or stage of solid tumors in relation to mean serum LDH level. High LDH level was observed in stage III, IV specially in non-Hodgkin lymphoma, but there were no differences regarding other types of solid tumors and statistical analysis was not performed due to small sample size.

Type No.	Stage	LDH activity	LDH activity	
		before remission	after remission	
Lymphoma NHL (6)	II	220		
	III	300		
	III	350	320	
	IV	390	360	
	IV	445	240	
	IV	475	325	
Hodgkin's (6)	II	220		
	II	325	170	
	II	325	300	
	II	330		
	III	220		
	III	310	275	
Rhabdomyosarcoma (4)	II	340		
	IV	380		
	IV	360		
	IV	390	360	
Retinoblastoma(2)	II	310	300	
	IV	390		

Table 4. The activity or stage of solid tumors in relation to mean serum LDH (IU/L) level

The effect of chemotherapeutic treatment is presented in Table 5, which showed the mean serum levels of LDH in different types of malignancies before and after induction of chemotherapy or remission. The response to treatment was observed by the decrease in LDH activity. This decrease was statistically highly significant in ALL (P < 0.01) but not significant regarding other types of malignancy.

Type of Malignancy No. <u>LDH activity (IU/L)</u> P value				
No.	LDH activity (IU/L)		P value	
	Before	Remission		
13	520 ± 165	$303\pm~90$	0.01 (S)	
1	460	350		
1	425	265		
3	405 ± 64	331 ± 25	NS	
1	135	125		
1	260	290		
1	390	360		
3	320 ± 69	$248\pm\ 69$	NS	
1	310	300		
	No. 13 1 1 3 1 1 1 1 1	No.LDH actiBefore13 520 ± 165 1 460 1 425 3 405 ± 64 1 135 1 260 1 390 3 320 ± 69	No.LDH activity (IU/L)BeforeRemission13 520 ± 165 303 ± 90 1460 350 1425 265 3 405 ± 64 331 ± 25 1135 125 12602901390 360 3 320 ± 69 248 ± 69	

Table 5. Mean level serum LDH before treatment and after remissionin different types of malignant cases

Results are mean $\pm SD$

DISCUSSION

A marked increase in serum LDH level has been observed in the past in neoplastic diseases by several authors, although no clear correlation has been established either with a specific disease or any clinical parameter¹². In this prospective study, serum LDH levels were determined in children with different types of malignancy, their ages range from less than one year up to fifteen years, and, in thirty-seven healthy children matched for age and sex who served as controls.

Mean LDH levels were markedly elevated in patients with leukemia especially acute lymphoblastic leukemia ($562 \pm 161 \text{ IU/L}$) followed by chronic mylocytic leukemia ($418 \pm 11 \text{ IU/L}$) and finally acute myeloblastic leukemia ($375 \pm 96 \text{ IU/L}$). It was statistically highly significant (P<0.001) in acute lymphoblastic leukemia only when compared to those obtained for other groups or the controls. Our results were similar to those obtained from Kornbery and Polliak³, and Sactor, et al¹³. The result could be explained as LDH levels will frequently be elevated due to leukemic cell lysis, although hepatomegaly may be accompanied by mild abnormalities of liver function tests¹⁴, or increased cellular LDH activity reflects a glycolysis in the cytoplasm of malignant cell accompanied by high turnover rate¹⁵.

In the present study, high LDH levels in acute lymphoblastic leukemia (ALL) correlated with leukocyte counts and blast cells that were statistically significant (P<0.04, and 0.001 respectively). However, no agreement was found by Ching-Honpui¹ as their study showed that serum LDH levels in children with acute lymphoblastic leukemia were roughly correlated with leukocyte counts but not with the percentage of blast cells. These observations were explained in that the

total body burden of leukemia cells is a more important determinant of serum LDH level than the cell proliferative rate¹⁶.

In patients with other types of malignant diseases especially lymphoma (NHL & Hodgkin's), correlation with activity or stage of disease was found, even though, statistical analysis couldn't be done due to small sample size. Similar results were observed by Aresneau et al¹⁷, who found that the LDH level in lymphoma correlated with tumor mass. In addition, another study¹⁸ reported that serum LDH levels, which may reflect the mass of tumor present, were lowest in patients with localized disease. This could explain the markedly elevated levels of serum LDH in untreated patients with large tumors.

With regards to the recognition of LDH level before and after induction of chemotherapy, it was found that in acute lymphoblastic leukemia there was a significant reduction in mean LDH level (303 ± 90 IU/L), 4-6 weeks after induction of chemotherapy (P <0.01). This reduction was not significant regarding other types of malignancy. Simore et al¹⁹ and Miller et al²⁰ reported in their study that LDH in acute lymphoblastic leukemia serve as the best predictors of treatment outcome.

CONCLUSION

In conclusion, evaluation of LDH level in patients with acute lymploblastic leukemia could represent an additional and useful parameter in determining the clinical and prognostic aspect of the disease.

REFERENCES

- 1. Puc CH, Dodge RK, Dahl GV, et al. Serum lactic dehydrogenase level has prognostic value in childhood acute lymphoblastic leukemia. Blood 1985; 66:778–82.
- 2. Lehninger Al. Organ interrelationships in the metabolism of mammals. In: Lehninger Textbook of Biochemistry, New York:worth, 2000: 829.
- 3. Kornberg A, Polliak A. Serum lactic dehydrogenase (LDH) levels in acute leukemia marked elevations in lymphoblastic leukemia. Blood 1980;56:351-5.
- 4. Starkweather WH, Scoch HK. Some observation on the lactate dehydrogenase of human neoplastic tissue. Biochem Biophys Acta 1962;62: 440-2.
- 5. Rotenberg Z, Weinberger I, Fuchs W, et al. Elevation of serum lactic dehydrogenase levels as an early marker of acute malignant lymphoma. Cancer 1984;1:1379–81.
- 6. Schneider RJ, Seibert K, Passes S, et al. Prognostic significance of serum lactate dehydrogenase in malignant lymphoma. Cancer 1980; 46:139-43.
- Sagman UF, Feld R, Evans WK, et al. The prognostic significance of pretreatment serum lactate dehydrogenase in patients with small-cell lung cancer. J Clin Oncol 1991;9:945-54.
- 8. Klein EA. Tumor markers in testis. Cancer Urol Clin North Am 1993; 20: 67-73.
- Ronald F, Robert J, Ginsberg K, et al. Lung. In: Abdoff MD, Armitage JO, Allen S, eds. Clinical Oncology Textbook. 2nd edn. Lichten: Churchill Livingston, 2000:1445.
- 10. Von-Eyben FE, Blaabjerg O, Madsen FL, et al. Serum lactate and tumor

volume are indicators of response to treatment and are predictors of prognosis in metastatic testicular germ cell tumor. Eur J Cancer 1992;28: 410-15.

- 11. Eder OB. Oncology and terminal care. In: Campbell AGM, McIntosh N, eds. Forfar and Aarnels Textbook of pediatrics. 5th edn. 1998:910.
- 12. Glodman RD, Kaplan NO, Hall TC. Lactic dehydrogenase in human neoplastic tissues. Cancer Res 1964;24:28 -32.
- 13. Sactor B, Dick AR. Alpha-Glycerophosphate and lactic dehydrogenase of hematopoictic cells from leukemic mice. Cancer Res 1960;20:1408-12.
- 14. Theodore F, Zip F, Bery SL, et al. Childhood leukemias. In: Abeloff MD, Armitage JO, Lichter A, eds. Clinical Oncology Textbook. 2nd edn. 2000:2414.
- Field M, Block JB, Levin R, et al. Significance of blood lactate elevation among patients with acute leukemia and other lymphobastic proliferative disorder. Am J Med 1966; 40: 528-47.
- 16. Papadopoulus NM. Clinical applications of lactate dehydrogenase isoenzymes. Ann Clin Lab Sci 1977; 7: 506–10.
- 17. Arseneau JC, Canellos GP, Banks PM, et al. American Burkitts lymphoma: A clinicopathologic study of 30 cases. Am J Med 1975;5:314-21.
- 18. Klein G, Klein E, Clifford P. Host defenses in leukemia and Burkett's lymphoma. Cancer 1968;21:587-94.
- 19. Simone JV, Verzosa MS, Rudy JA. Initial feature and prognosis in 363 children with acute lymphocytic leukemia. Cancer 1975;36:2099-108.
- 20. Miller DR, leikins S, Albo V, et al. Prognostic factors and therapy in acute lymphoblastic leukemia of childhood. Cancer 1983;51:1041-9.