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Double-Dilation Non-Pooling Convolutional Neural Network for Breast Mass 
Mammogram Image Classification

Mei-Ling Huang* Ting-Yu Lin*

ABSTRACT
Background and Objective: Many researchers have examined breast mammogram images by using deep learning 
methods. Some scholars have used the existing convolutional neural network (CNN) model for classification, 
whereas other scholars have improved on the CNN model to obtain superior image classification performance.

Method: This study used breast mass mammograms (BMMs) from the INbreast database, MIAS 
database, and Digital Database for Screening Mammography to establish a new BMM database for 
testing two developed breast mass classification models that can extract diverse features: (1) a double-
dilation non-pooling CNN (DDNPNet) and (2) AlexNet II. We compared the results of these two 
classification models with those of three other CNN models, namely AlexNet, DenseNet, and ShuffleNet.  

Results: For the established BMM database, DenseNet exhibited the highest evaluation indices. The accuracy, 
specificity, sensitivity, F1 score, and training time of DenseNet were 98.59%, 98.21%, 99.08%, 98.43%, and 6 h 
39 min 21 s, respectively. Although DenseNet provided satisfactory results, it required a long training time. For 
the established BMM dataset, the accuracy, specificity, sensitivity, F1 score, and training time of the DDNPNet 
model were 95.41%, 95.86%, 94.83%, 94.81%, and 26 min 23 s, respectively. Thus, the DDNPNet model provided 
similar classification results to the other models but in considerably less time.

Conclusion: The breast mass classification models proposed in this study can assist physicians in the analysis of 
BMMs.
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INTRODUCTION
Due to the fast pace of modern life and long-term stress, an individual 
may be affected by various disease-related issues. Breast cancer is a 
major disease that women must pay attention to. According to statistics 
from the American Cancer Society1, approximately 268,600 women 
received a diagnosis of breast cancer in the United States in 2019. 
Moreover, in the same year, approximately 41,760 female patients with 
breast cancer were on the verge of death. Most patients with breast 
cancer are diagnosed in the late stage of the disease. According to 
Siegel et al.2-7, the number of new diagnoses and mortalities of breast 
cancer in the United States have increased every year from 2015 to 
2020. Thus, the control of breast cancer has become an urgent public 
issue. The incidence of breast cancer has gradually increased in not 
only developed countries but also in developing countries. The best 
method for controlling breast cancer is early detection and diagnosis. 
The method for early diagnosis of breast cancer involves conducting a 
biopsy; however, a biopsy imposes a large burden on patients because 
patients must endure pain when they undergo biopsies8. With the 
advancement of technology, some new methods are now available to 
facilitate the diagnosis of breast cancer by physicians. As indicated 
by the American College of Radiology, tools such as mammograms, 
breast ultrasounds, and breast magnetic resonance imaging (MRI) 
scans, can be used to diagnose breast cancer. Ardakani et al.9 stated that 
mammograms are a common tool to diagnose breast cancer. Moreover, 
computer-aided diagnosis (CAD) can help physicians recognize from a 
breast mass image whether a breast mass is benign or malignant. This 
strategy helps patients avoid undergoing a biopsy and reduces their 

pain. Moreover, it can improve the accuracy with which physicians 
can recognize benign or malignant masses in mammogram images. 
The appearances and shapes of benign and malignant masses of breast 
cancer are different. Benign tumors have a relatively smooth shape, 
whereas malignant tumors are irregularly shaped10.

Many studies have been conducted on mammograms, and mammograms 
have become important tools for determining whether a patient has 
breast cancer. In recent years, rapid developments have occurred in 
deep learning (DL), which is useful in cancer-related research. Many 
studies on mammogram image recognition have used DL because DL 
does not require complex feature extraction methods. The purpose 
of DL is to help physicians perform aided diagnosis and improve the 
quality of medical care. The following text presents the improvements 
achieved by studies in the CAD technology used for breast cancer.

In many studies, mammograms have been preprocessed before being 
input into a convolutional neural network (CNN) model for training. 
Makandar et al.11 performed contrast-limited adaptive histogram 
equalization (CLAHE) on mammograms. They focused on 20 images 
in the MIAS database and found that CLAHE can effectively denoise 
mammograms and enhance their contrast. In addition to the CLAHE 
method, breast mammogram preprocessing methods include image 
normalization, data augmentation, and image resizing12,13. To obtain 
a high-performance CAD system for breast cancer, Al-Masni et al.12 
adopted the image normalization technique. Li et al.10 stated that image 
normalization can deal with the differences in images caused by the use 
of different equipment.



1145

Bahrain Medical Bulletin, Vol. 44, No. 4, December 2022

Jiao et al.14 used a CNN to classify 600 breast mass images from the 
Digital Database for Screening Mammography (DDSM). Dhungel 
et al.15 used the CNN method to extract features from the INbreast 
database and then used the random forest method to classify breast 
mass mammograms (BMMs). A classification accuracy of 95.00% 
was achieved in the aforementioned study. Al-Masni et al.12 used fully 
connected neural networks to classify breast mass images from the 
DDSM and achieved a classification accuracy of 97.00%. Chougrad 
et al.16 applied different CNN models, such as VGG16, ResNet50, and 
InceptionV3, to classify breast mass images from t8he DDSM and 
the INbreast, BCDR, and MIAS databases. The results indicated that 
InceptionV3 had the highest classification accuracy for all the databases. 
A higher accuracy was obtained when combining the DDSM, INbreast 
database, and BCDR database than when using a single database. 
Al-antari et al.17 used DL methods to classify breast mammograms 
from the INbreast database. They used the transfer learning AlexNet 
model for mass classification and achieved a classification accuracy 
of 95.64%. The aforementioned authors also achieved a high training 
speed (each image required 12.23 s for classification).

The aforementioned studies used the existing CNN model to classify 
breast mammograms. In addition, some studies have made changes 
to the CNN model architecture to decrease the classification time and 
increase the classification accuracy. Cai et al.18 improved DenseNet by 
adding the squeeze and excitation DenseBlock (SE-DenseBlock) into 
the DenseNet. They classified breast mammograms from the DDSM and 
BCDR database. Furthermore, the aforementioned authors compared 
SE-DenseNet with VGG16, Inceptionv3, ResNet, and DenseNet and 
found that SE-DenseNet exhibited the best performance. Li et al.10 used 
a self-collected database and added the inception concept to the first 
convolutional layer in DenseNet to create DenseNet-II. DenseNet-II 
can classify breast masses as benign or malignant more accurately and 
quickly than DenseNet can. The aforementioned authors compared five 
models: DenseNet-II, DenseNet, AlexNet, VGGNet, and GoogLeNet. 
Their results indicated that DenseNet-II outperformed the other four 
models for all the model evaluation indicators used. The accuracy, 
sensitivity, and specificity of DenseNet-II were 94.55%, 95.60%, and 
95.36%, respectively.

Sun et al.19 developed a multiview CNN to classify masses from the 
DDSM and MIAS database. They also set different dilation factors for 
the convolutional layer in the CNN to extract features at different scales. 
The aforementioned authors compared the multiview CNN with other 
popular CNN models (such as ShuffleNet and InceptionV4) and found 
that the multiview CNN exhibited the highest classification accuracy 
(82.02%). Agnes et al.20 improved the CNN model and proposed a 
multiscale all CNN (MA-CNN). They used different dilation factors 
for the convolutional layer and removed all the pooling layers from 
the model. Only the large-stride convolutional layer remained in the 
model. 

The aforementioned authors used four CNN methods, namely the (1) 
original CNN, (2) all convolutional CNN, (3) multiscale CNN, and (4) 
MA-CNN, to classify normal tissues, benign masses, and malignant 
masses in images from the MIAS database. They found that the MA-
CNN (accuracy of 96.47%) outperformed the original CNN model 
(accuracy of 81.13%), all convolutional CNN (accuracy of 89.80%), 
and multiscale CNN model (accuracy of 90.70%). The MA-CNN can 
use different dilation factors to extract features at different scales; thus, 
it provides higher classification accuracy than other methods do.

As indicated by the aforementioned studies, the study of breast 
mammograms through DL methods has become a major research trend. 
Studies have indicated that the dilation CNN can extract considerable 

feature information. Moreover, high-accuracy classification results 
can be obtained using a large-stride convolutional layer to replace the 
pooling layer. Therefore, this study proposed using AlexNet II and 
the double-dilation non-pooling CNN (DDNPNet), which are based 
on the aforementioned improved models, for breast mammogram 
classification. The INbreast database, MIAS database, and DDSM 
are common breast mammogram databases used in breast cancer 
research. The breast mammograms used in this study were obtained 
from the INbreast database, MIAS database, and DDSM. We also 
combined these three databases to establish a new BMM database. 
Data augmentation must be performed to avoid overfitting in DL. 
This study first preprocessed the breast images by using four methods: 
image resizing, CLAHE, image normalization, and data augmentation. 
Then, the preprocessed images were input into the AlexNet II and 
DDNPNet models to classify them. The classification performance of 
the proposed methods was compared with that of three existing CNN 
models, namely AlexNet, DenseNet, and ShuffleNet. 

The remainder of this paper is structured as follows. Section 2 introduces 
the databases used in this research and the models proposed in this 
study. Section 3 presents the results of this study. Section 4 provides a 
comparison between existing CNN methods and the proposed models 
for breast mammogram classification. Finally, Section 5 presents the 
conclusion of this study.

MATERIALS AND METHODS 
The study flowchart is depicted in Figure 1. We collected breast 
mammograms from the INbreast database, MIAS database, and DDSM 
and then performed image preprocessing. The image preprocessing 
methods used in this study were image resizing, CLAHE, image 
normalization, and data augmentation. A CNN was used to classify 
the breast mammograms from the DDSM and the INbreast, MIAS, and 
BMM databases.

We proposed two models, namely AlexNet II and DDNPNet, for 
breast mammogram classification. Compared with other classification 
models, the aforementioned two models can extract more diverse 
features and require a shorter training time. Four model evaluation 
indicators, namely accuracy, specificity, sensitivity, and F1 score, were 
used to assess the performance of the two proposed models. Finally, 
the performance of the proposed models was compared with that of the 
AlexNet, DenseNet, and ShuffleNet models.

Data Extraction: Breast mammograms from the INbreast database21 
were collected from Centro Hospitalar de S. Joao, Breast Centre, 
Porto. The aforementioned dataset contains 410 breast mammogram 
images, of which we collected 106 images displaying breast masses. 
Among the 106 images, 35 images displayed benign masses and 71 
images displayed malignant masses. The format of the images was 
DICOM. The DICOM format was converted to the PNG format by 
using MATLAB software. The INbreast database contains breast 
mammograms captured from two perspectives: the craniocaudal (CC) 
and mediolateral oblique (MLO) perspectives22.

The MIAS database (MiniMammographic Database)23 contains 322 
breast mammograms in the PGM format. Of these images, 53 images 
display breast masses. Of the aforementioned 53 images, 33 depict 
benign masses and 20 depict malignant masses. The images of the 
MIAS database were converted from the PGM format to the PNG 
format by using MATLAB software. The database website clearly 
indicates whether the mammograms display benign or malignant 
tumors. The MIAS database contains mammograms with 8- and 32-bit 
depth. We used MATLAB software to normalize the bit depth to 8. 
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Figure 1: Flowchart

The aforementioned database only includes images captured from the 
MLO perspective24. The MIAS database contains image perspective 
information, which may affect model classification. Therefore, we 
cropped the mammograms from the MIAS database and only retained 
the breast region.

The DDSM25 contains mammograms in the LJPEG format. LJPEG is 
a specialize format that can maintain the clarity of the original image. 
Thus, we used Ruby language in Cygwin to convert the DDSM images 
from the LJPEG format to the PNG format. The bit depth of the DDSM 
images is inconsistent; therefore, MATLAB software was used to 
normalize the bit depth to 8. The original DDSM comprises 10,480 
images. After conducting sorting, 2,188 images with breast masses 
were included in this study. Of these 2,188 images, 995 depicted benign 

masses and 1,193 depicted malignant masses. Moreover, the DDSM 
contains images captured from the CC and MLO perspectives26,27. 
Because the DDSM images contain image perspective information, we 
cropped the images and only retained the breast region.

The MIAS database and DDSM do not follow the BI-RADS seven-
level standard. The websites of these databases indicate whether the 
mass displayed in an image is benign or malignant. The INbreast 
database follows the BI-RABS standard. If a BMM from the INbreast 
database has a BI-RADS score of 1-3, the corresponding breast mass is 
categorized as a benign mass. Moreover, if a BMM from the INbreast 
database has a BI-RADS score of 4-6, the corresponding breast mass is 
classified as a malignant mass17. This study adopted the aforementioned 
rules for classifying images from the INbreast database.

Image Preprocessing: Four image preprocessing methods were used 
in this study: image resizing, CLAHE, image normalization, and data 
augmentation.

First, all the collected images were resized to 227 × 227 pixels to 
be input into the adopted CNN classification model. Then, CLAHE 
was conducted for image preprocessing. CLAHE is an extension of 
histogram equalization (HE) and adaptive HE (AHE). Although HE can 
make the target area more prominent, problems related to background 
noise still exist. To solve the issue of background noise in HE, AHE 
was proposed. AHE can make the target area more prominent than 
HE can; however, the drawback of background noise still occurs. 
Therefore, Zuiderveld28 proposed the CLAHE method, which not only 
makes the target area clearly visible but also prevents background 
noise from interfering with the image. In this study, the original images 
and the images obtained after CLAHE were included in the BMM 
image classification model. Thus, 212 images were obtained for the 
INbreast database after CLAHE. Of these images, 70 displayed benign 
masses and 142 displayed malignant masses. A total of 106 images 
were obtained for the MIAS database after CLAHE. Of these images, 
66 images displayed benign masses and 40 displayed malignant mass. 
A total of 4,376 images were obtained for the DDSM after CLAHE. 
Of these images, 1,990 depicted benign masses and 2,386 depicted 
malignant masses. Finally, 4,694 images were obtained for the BMM 
database after CLAHE. Of these images, 2,126 depicted benign masses 
and 2,568 depicted malignant masses. Table 2 presents the number of 
images obtained after CLAHE for each database.

As displayed in Figure 2, the position of the breast mass was clearer 
in the image obtained after CLAHE than in the original image. Thus, 
conducting CLAHE on breast mass images can enhance the ability of a 
classification model to learn the characteristics of the breast mass and 
the classification performance of the model.

Studies have indicated that image normalization can not only solve the 
problem of uneven lighting in an image but also increase the robustness 
of a classification model10. Because the INbreast and MIAS databases 
contained a small number of images, the number of images was 
augmented by performing multiangle rotation (θ = 30°, 60°, 90°, 120°, 
150°, 180°, 210°, 240°, 270°, 300°, and 330°) as well as horizontal 
and vertical flipping. The DDSM initially contained a large number 
of images; therefore, only two-angle rotation (θ = 120° and 240°) 
was performed to augment the number of images in the DDSM. Data 
augmentation can not only increase the number of samples but also 
prevent the model from overfitting due to a small number of images. 
Table 3 presents the number of images obtained after data augmentation 
for each database.

Proposed CNN Models: Different patients have different sizes and 
shapes of breast masses. This study integrated three breast mammogram 
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databases. The background and capturing methods for each database 
are marginally different; therefore, to extract diverse features that can 
facilitate image classification, this study used a dilation convolutional 
(DC) layer to improve the existing AlexNet model and developed two 
models, namely AlexNet II and DDNPNet. Fig. 3 displays examples 
of different dilation factors. In Figure 3, d denotes the dilation factors. 
For example, when d = 1, simple convolution is performed for feature 
extraction; when d = 2, feature extraction is performed in two intervals; 
and when d = 3, feature extraction is performed in three intervals.

As displayed in Figure 3 and Figure 4, double-dilation convolution 
can increase the number of features extracted by a model. Moreover, 
features in different dimensions can be extracted using different dilation 
factors. Convolution involves multiplying two matrices to obtain a 
feature map. A simple convolution can be performed using Eq. (1)20. 
Dilation convolution also involves the multiplication of two matrices 
to form a feature map. By using different dilation factors, feature 
extraction can be performed in an extensive manner for different 
intervals in the original image. The calculation formula for different 
dilation factors is presented in Eq. (2)20.

    			                (1)

  			                  (2)

where C [x,y] denotes the coordinate axis position of the feature map 
extracted through convolution, I [x,y] denotes the coordinate axis 
position of the original image, H [x,y] denotes the coordinate axis 
position of the convolution kernel, and d denotes the dilation factor.

In a simple CNN, a series of convolution and pooling procedures must 
be performed to reduce the image size gradually. However, the models 
proposed in this study do not contain pooling layers but only contain the 
convolutional layer. To compensate for the absence of pooling layers, 
this study enlarged the stride of the convolutional layer. In general, the 
size of the image is affected by many factors, such as the input image 
size, stride, kernel size, and padding. These factors can determine the 
image size after convolution or pooling. The formula for calculating 
the image size after convolution and pooling is presented in Eq. (3)20. 
In this study, the image size was constantly reduced by increasing the 
stride of the convolutional layer.

INbreast database MIAS database DDSM database
Original image format DICOM PGM LJPEG

Original image size 2560*3328 pixel
3328*4084 pixel 1024*1024 pixel Different sizes (pixels)

View CC & MLO MLO CC & MLO
Total number of images (pictures) 410 322 10,480

Mass categories
According to
BI-RADS
standard

Benign/
Malignant

Benign/
Malignant

Number of masses 106 53 2,188

Table 1: Comparison of the INbreast database, MIAS database, and DDSM24

INbreast database MIAS database DDSM database BMM database
Benign 70 66 1,990 2,126
Malignant 142 40 2,386 2,568
Total 212 106 4,376 4,694

Table 2: Number of images obtained after CLAHE for each database

Figure 2: Comparison between the images obtained before and after CLAHE: (a) original image, (b) location of the breast mass marked by a black 
circle, and (c) image obtained after CLAHE

(a) (b) (c)

INbreast database MIAS database DDSM database BMM database
Benign 2,520 2,376 5,970 10,866
Malignant 5,112 1,440 7,158 13,710
Total 7,632 3,816 13,128 24,576

Table 3: Number of images after data augmentation for each database
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(3)

AlexNet II Model: In this study, the AlexNet model was improved to 
form the AlexNet II model. The first convolutional layer of the AlexNet 
model was replaced with a DC layer so that more diverse features 
could be extracted. In addition, all the pooling layers of the model were 
removed and replaced with a convolutional layer having a large stride. 
The number of fully connected layers was changed from 3 to 1. The 
AlexNet II model operates automatically from the image input step to 
the classification result output step. It does not require manual feature 
extraction. Figure 5 displays the architecture of the AlexNet II model.

After an image is input into AlexNet II, it first enters the double DC 
layers. AlexNet II can obtain features having diverse receptive fields 
through the convolution operation with different dilation factors (d = 1 
and 2). It transfers the rich features extracted from the previous layer to 
the next convolutional layer through the concatenation layer. In AlexNet 

II, the concatenation layer and convolutional layer 1 are connected to 
a rectified linear unit (ReLU) and cross-channel-normalized layer. 
The remaining convolutional layers are only connected to one ReLU. 
A ReLU is a common activation function in CNN that can solve the 
problem of vanishing gradients.

Because double-dilation convolution is an important feature extraction 
tool for AlexNet II, a stride of 4 was used in double-dilation convolution 
to extract detailed feature information. Because the aforementioned 
model lacks a pooling layer, the stride must be increased. Therefore, 
the strides of the group convolutional layer and convolutional layer 
set were set as 5 (in the original AlexNet model, the stride is set as 1 
or 2). In addition, an increased stride can marginally reduce the model 
training time.

DDNPNet Model: Figure 6 presents the architecture of the DDNPNet 
model. In the DDNPNet model, different dilation factors and no 
pooling layers are used. The difference between DDNPNet and 

d = 1 d = 2 d = 3
Figure 3: Examples of different dilation factors

Figure 4: Concept of double-dilation convolution



1149

Bahrain Medical Bulletin, Vol. 44, No. 4, December 2022

Figure 5: Architecture of the AlexNet II model

Figure 6: Architecture of the DDNPNet model
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AlexNet II is that DDNPNet contains a simple convolutional layer, 
whereas AlexNet II contains a group convolutional layer. DDNPNet 
reduces one convolutional layer and thus requires a shorter training 
time. Furthermore, cross-channel normalization, rather than batch 
normalization, is used in DDNPNet.

Similar to AlexNet II, DDNPNet is a fully automatic classification 
model. Images are passed through double DC layers and then enter 
the concatenation layer. The concatenation layer passes a large number 
of features extracted from the previous layer to the next convolutional 
layer. The strides of the convolutional layers of DDNPNet are set 
as 5 to compensate for the absence of pooling layers. After each 
convolutional layer, a ReLU layer and batch normalization layer are 
added. The advantage of batch normalization is that it can speed up the 
training process and improve the model performance.

Model 	 Evaluation: As presented in Table 4, the model classification 
results can be categorized into four results: true positives (TPs), false 
negatives (FNs), false positives (FPs), and true negatives (TNs). 
Four model evaluation indicators were used in this study: accuracy, 
specificity, sensitivity, and F1 score.

RESULTS
The experiments in this study were conducted using MATLAB 
R2019a. The relative parameters were set as follows: initial learning 
rate = 0.0003; minibatch size = 10; max epochs of AlexNet, AlexNet 
II, and DDNPNet = 25; and max epochs of DenseNet and ShuffleNet 
= 5. We used 80% of the input images as the training set and 20% of 
the input images as the testing set. Moreover, we applied fivefold cross 
validation. Table 5 presents the number of training and testing image 
sets. All the experiments in this study were performed on a PC with the 
following specifications: Intel(R) Core (TM) i7-8700 CPU @ 3.20GHz 
with 32 GB RAM.

Breast Mass Classification Results for the Inbreast Database:
As presented in Table 6 and Figure 7, for the INbreast database, the 
accuracy, specificity, sensitivity, F1 score, and training time of AlexNet 
were 90.75%, 93.05%, 86.08%, 86.07%, and 10 min 44 s, respectively. 
The accuracy, specificity, sensitivity, F1 score, and training time of 
DenseNet were 98.95%, 98.83%, 99.21%, 98.44%, and 2 h 8 min 57 
s, respectively. The accuracy, specificity, sensitivity, F1 score, and 
training time of ShuffleNet were 94.06%, 95.73%, 90.67%, 90.97%, 
and 17 min 2 s, respectively. The accuracy, specificity, sensitivity, F1 
score, and training time of AlexNet II were 95.39%, 97.95%, 90.20%, 
92.81%, and 9 min 23 s, respectively. Finally, the accuracy, specificity, 
sensitivity, F1 score, and training time of DDNPNet were 95.77%, 
97.83%, 91.59%, 93.45%, and 8 min 23 s, respectively.

Breast mass classification results for the MIAS database
As presented in Table 7 and Figure 8, for the MIAS database, the 
accuracy, specificity, sensitivity, F1 score, and training time of AlexNet 
were 93.03%, 86.83%, 96.55%, 94.65%, and 5 min 19 s, respectively. 
The accuracy, specificity, sensitivity, F1 score, and training time of 
DenseNet were 98.03%, 97.43%, 98.40%, 98.42%, and 1 h 1 min 25 
s, respectively. The accuracy, specificity, sensitivity, F1 score, and 
training time of ShuffleNet were 94.71%, 91.81%, 96.47%, 95.75%, 
and 8 min 39 s, respectively. The accuracy, specificity, sensitivity, F1 
score, and training time of AlexNet II were 91.93%, 85.84%, 95.62%, 
93.65%, and 4 min 39 s, respectively. Finally, the accuracy, specificity, 
sensitivity, F1 score, and training time of DDNPNet were 93.61%, 
87.64%, 97.22%, 94.99%, and 3 min 51 s, respectively

Breast mass classification results for the DDSM database
As presented in Table 8 and Figure 9, for the DDSM, the accuracy, 
specificity, sensitivity, F1 score, and training time of AlexNet were 
99.92%, 99.90%, 99.93%, 99.91%, and 18 min 31 s, respectively. 
The accuracy, specificity, sensitivity, F1 score, and training time of 
DenseNet were 99.93%, 99.90%, 99.97%, 99.92%, and 3 h 32 min 
41 s, respectively. The accuracy, specificity, sensitivity, F1 score, and 
training time of ShuffleNet were 99.86%, 99.82%, 99.92%, 99.85%, 
and 29 min 3 s, respectively. The accuracy, specificity, sensitivity, 
F1 score, and training time of AlexNet II were 99.12%, 99.16%, 
99.08%, 99.04%, and 18 min 21 s, respectively. Finally, the accuracy, 
specificity, sensitivity, F1 score, and training time of DDNPNet were 
99.63%, 99.62%, 99.65%, 99.60%, and 13 min 41 s, respectively.

Breast mass classification results for the BMM database
As presented in Table 9 and Figure 10, for the BMM database, the 
accuracy, specificity, sensitivity, F1 score, and training time of AlexNet 
were 94.83%, 94.55%, 95.19%, 94.21%, and 38 min 31 s, respectively. 
The accuracy, specificity, sensitivity, F1 score, and training time of 
DenseNet were 98.59%, 98.21%, 99.08%, 98.43%, and 6 h 39 min 
21 s, respectively. The accuracy, specificity, sensitivity, F1 score, and 
training time of ShuffleNet were 95.04%, 95.30%, 94.71%, 94.40%, 
and 53 min 44 s, respectively. The accuracy, specificity, sensitivity, F1 
score, and training time of AlexNet II were 93.35%, 93.51%, 93.18%, 
92.71%, and 31 min 1 s, respectively. Finally, the accuracy, specificity, 
sensitivity, F1 score, and training time of DDNPNet were 95.41%, 
95.86%, 94.83%, 94.81%, and 26 min 23 s, respectively.

DISCUSSION
Table 10 presents the literature on breast mammogram classification. 
Ribli et al.29 used the VGG16 model to classify breast masses and 
obtained an AUC of 0.95. Al-antaria et al.17 used the transfer learning 
AlexNet model for mass classification and achieved a classification 
accuracy of 95.64%. In this study, the AlexNet model yielded 
an accuracy of 90.75% for the classification of the images from 
the INbreast database. However, the AlexNet II model achieved 
a higher classification accuracy (95.39%) and required a lower 
training time than did the AlexNet model for classifying the images 
in the aforementioned dataset. Sun et al.19 used the multiview and 
multidilation CNN (MVMDCNN-Loss) to classify breast mass images 
from the DDSM and the MIAS database. They achieved classification 
accuracies of 82.02% and 63.06% for the DDSM and the MIAS 
database, respectively. The DDSM and the MIAS database were 
also used in this study. AlexNet II, in which dilation convolution is 
performed, achieved classification accuracies of 99.12% and 91.93% 
for the DDSM and the MIAS database, respectively. Li et al.10 improved 
DenseNet by using a self-collected database to classify breast masses 
and obtained a classification accuracy of 94.55%. In this study, the 
original DenseNet model was used for classifying mammograms from 
four databases. The aforementioned model provided accuracies of 
more than 98% for all the databases. This result is similar to that of 
Li10. However, DenseNet required a long training time. Agnes et al.20 
used four dilation factors (d = 1, 2, 3, and 4) in the first convolutional 
layer and removed all the pooling layers from the classification model. 
The pooling layers were replaced with large-stride convolutional layers 
to classfy images from the MIAS database. Agnes et al.20 achieved a 
classification accuracy of 96.47% with their model. This study used 
the DDNPNet model for automatic feature extraction and classification 
and implemented double-dilation convolution in the first convolutional 
layer. Furthermore, we also removed all the pooling layers from the 
model. We used DDNPNet to classify breast mass mammograms 
obtained by integrating three databases (into the BMM database). A 
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Prediction
Malignant mass (Positive) Benign mass (Negative)

Actual

Malignant 
mass 
(Positive)

The mass is actually a malignant mass, and the model 
also classifies the mass as a malignant mass. (TP)

The mass is actually a malignant mass, but the model 
classifies the mass as a benign mass. (FP)

Benign mass 
(Negative)

The mass is actually a benign mass, but the model 
classifies the mass as a malignant mass. (FN)

The mass is actually a benign mass, and the model also 
classifies the mass as a benign mass (TN)

Table 4: Confusion matrix of mass classification

CV Training
/Testing

INbreast MIAS DDSM BMM
Benign Malignant Benign Malignant Benign Malignant Benign Malignant

1 Training 2,016 4,089 1,990 1,152 4,776 5,726 8,782 14,023
Testing 504 1,023 476 288 1,194 1,432 2,174 3,485

2 Training 2,017 4,090 1,901 1,153 4,777 5,726 8,695 13,938
Testing 503 1,022 475 287 1,193 1,432 2,171 3,480

3 Training 2,017 4,089 1,901 1,153 4,777 5,727 8,695 13,937
Testing 503 1,023 475 287 1,193 1,431 2,171 3,481

4 Training 2,017 4,090 1,901 1,153 4,777 5,726 8,695 13,938
Testing 503 1,022 475 287 1,193 1,432 2,171 3,480

5 Training 2,013 4,090 1,901 1,149 4,773 5,727 8,687 13,926
Testing 507 1,022 475 291 1,197 1,431 2,179 3,492

Table 5: Number of training and testing image sets

Model INbreast Database
Accuracy Specificity Sensitivity F1 Score Time

AlexNet 90.75% 93.05% 86.08% 86.07% 00:10:44
DenseNet 98.95% 98.83% 99.21% 98.44% 02:08:57
ShuffleNet 94.06% 95.73% 90.67% 90.97% 00:17:02
AlexNet II 95.39% 97.95% 90.20% 92.81% 00:09:23
DDNPNet 95.77% 97.83% 91.59% 93.45% 00:08:23

Table 6: Breast mass classification results for the INbreast database

Model MIAS Database
Accuracy Specificity Sensitivity F1 Score Time

AlexNet 93.03% 86.83% 96.55% 94.65% 00:05:19
DenseNet 98.03% 97.43% 98.40% 98.42% 01:01:25
ShuffleNet 94.71% 91.81% 96.47% 95.75% 00:08:39
AlexNet II 91.93% 85.84% 95.62% 93.65% 00:04:39
DDNPNet 93.61% 87.64% 97.22% 94.99% 00:03:51

Table 7: Breast mass classification results for the MIAS database

Model DDSM Database
Accuracy Specificity Sensitivity F1 Score Time

AlexNet 99.92% 99.90% 99.93% 99.91% 00:18:31
DenseNet 99.93% 99.90% 99.97% 99.92% 03:32:41
ShuffleNet 99.86% 99.82% 99.92% 99.85% 00:29:03
AlexNet II 99.12% 99.16% 99.08% 99.04% 00:18:21
DDNPNet 99.63% 99.62% 99.65% 99.60% 00:13:41

Table 8: Breast mass classification results for the DDSM 

Model BMM Database
Accuracy Specificity Sensitivity F1 Score Time

AlexNet 94.83% 94.55% 95.19% 94.21% 00:38:31
DenseNet 98.59% 98.21% 99.08% 98.43% 06:39:21
ShuffleNet 95.04% 95.30% 94.71% 94.40% 00:53:44
AlexNet-II 93.35% 93.51% 93.18% 92.71% 00:31:01
DDNPNet 95.41% 95.86% 94.83% 94.81% 00:26:23

Table 9: Breast mass classification for the BMM database
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Literature Database Image Preprocessing Classification Model Classification 
Categories

Results
(Acc.)

Ribli
et al.29 

DDSM Self-Collected
INbreast (2909 patients) VGG16 Benign/ Malignant 

Masses (Binary)
0.95
(AUC)

Al-Masni et 
al.12 

DDSM
(2400 images)

Multi-Threshold Peripheral Equalization
Otsu thresholding
2D Gaussian Low Pass Filter
Normalization
Data Augmentation (Rotate)

YOLO-based CAD 
system

Benign/ Malignant 
Masses
(Binary)

97.00%

Al-antaria 
et al.17

INbreast
(896 images)

ROI extraction
Data Augmentation (Rotate)

Transfer learning-
AlexNet

Benign/ Malignant 
Masses
(Binary)

95.64%

Chougrad 
et al.16

INbreast
BCDR
DDSM
Total: 6116

ROI extraction
Normalization
Data Augmentation
(Rotate, Shear, Zoom..)

VGG16
ResNet50
Iinceptionv3

Benign/ Malignant 
Masses
(Binary)

98.94%

Li et al.10 Self-Collected
(2402 patients)

Zero-mean normalization
Data Augmentation
(Rotate, Zoom, Mirror)

DenseNet-II
Benign/ Malignant 
Masses
(Binary)

94.55%

Sun et al.19 DDSM (1445 images) MVMDCNN-Loss Benign/ Malignant 
Masses (Binary)

82.02%
MIAS (644 images) 63.06%

Agnes
et al.20

MIAS
(4500 images)

Medium-Filter
Remove Pectoral Muscles
Data Augmentation
(Random Rotate, Flip)

MA-CNN
Benign/ Malignant 
Masses and Normal
(Triple)

96.47%

Proposed 
Method

INbreast
(7693 images)

Normalization
CLAHE
Data Augmentation
(Rotate, Flip)

AlexNet
Benign/ Malignant 
Masses
(Binary)

90.75%
DenseNet 98.95%
ShuffleNet 94.06%
AlexNet II 95.39%
DDNPNet 95.77%

Proposed 
Method

MIAS
(3816 images)

Normalization
CLAHE
Data Augmentation
(Rotate, Flip)

AlexNet
Benign/ Malignant 
Masses
(Binary)

93.03%
DenseNet 98.03%
ShuffleNet 94.71%
AlexNet II 91.93%
DDNPNet 93.61%

Proposed 
Method

DDSM
(13,128 images)

Normalization
CLAHE
Data Augmentation
(Rotate, Flip)

AlexNet
Benign/ Malignant 
Masses
(Binary)

99.92%
DenseNet 99.93%
ShuffleNet 99.86%
AlexNet II 99.12%
DDNPNet 99.63%

Proposed 
Method

BMM
(24,576 images)

Normalization
CLAHE
Data Augmentation
(Rotate, Flip)

AlexNet
Benign/ Malignant 
Masses
(Binary)

94.83%
DenseNet 98.59%
ShuffleNet 95.04%
AlexNet II 93.35%
DDNPNet 95.41%

Table 10: Related literature

Model Characteristic Advantage Disadvantage

AlexNet The beginning of the CNN model.
Model training time is shorter than DenseNet 
and ShuffleNet, while still maintaining well 
accuracy in the MIAS database.

Model training time still takes longer than 
AlexNet II and DDNPNet.

DenseNet Layer by layer, maintaining rich feature 
information. Obtained the highest accuracy. Consume a lot of computing resources, 

and the training time is longer.

ShuffleNet Shuffle between channels and exchange 
feature information with others.

Can maintained well accuracy in MIAS 
database.

Model training time longer than AlexNet, 
AlexNet II, and DDNPNet.

AlexNet II Using different dilation factors and 
removing all pooling layers.

Model training time is shorter than AlexNet 
II and DDNPNet. The accuracy is lower in MIAS database.

DDNPNet
Using different dilation factors and 
removing all pooling layers, to extract 
more features.

The model training time is the shortest. The accuracy is lower in MIAS database.

Table 11: Comparison of the adopted classification models
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Figure 7: Breast mass classification results for the INbreast database

Figure 8: Breast mass classification results for the MIAS database

Figure 9: Breast mass classification results for the DDSM
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Figure 10: Breast mass classification results for the BMM database

classification accuracy of 95.41% was obtained with DDNPNet for the 
BMM model. This result was similar to that of Agnes20. Moreover, 
DDNPNet provided a marginally lower classifcation accuracy but 
required a considerably shorter training time than DenseNet did 
(classification accuracy of 98.59% for DenseNet and 95.41% for 
DDNPNet; training time of 6 h 39 min 21 s for DenseNet and 26 min 
23 s for DDNPNet).

ome studies segmented the pectoral muscles in the preprocessing 
methods or only extracted the surrounding area of the breast mass into 
the classification model because the position of the pectoral muscles 
affects the accuracy of the classification model. Because breast masses 
are sometimes located at the pectoral muscles, we did not segment the 
pectoral muscles in this study. Although pectoral muscle segmentation 
was not performed, high classification accuracies were obtained in this 
study.

Different models have different advantages and disadvantages. For 
example, although DenseNet provided the highest classification 
accuracy, it required considerable computing resources and a long 
training time (the training time of DenseNet for the BMM database 
was 6 h 39 min 21 s) due to its layer-by-layer connection structure. 
However, this layer-by-layer structure prevents the loss of important 
features due to layer transmission, and the last layer can receive the 
effective feature information extracted from the previous layers.

Many studies on breast mammogram classification have not integrated 
the INbreast database, MIAS database, and DDSM for related 
research on breast mass classification. However, this study found that 
after integrating the aforementioned databases, the accuracies of the 
adopted classification methods did not decrease. The DDNPNet model 
had a higher accuracy than the AlexNet and ShuffleNet models and 
required less training time than the AlexNet, ShuffleNet, and DenseNet 
models. Thus, DDNPNet exhibited a satisfactory performance in the 
classification of benign and malignant breast masses. Table 11 presents 
a comparison of the characteristics, advantages, and disadvantages of 
the adopted classification models.

Additional experiments must be conducted in the future to determine 
whether the proposed DDNPNet model is suitable for other databases. 
Future studies can also apply DDNPNet to other databases to obtain 
comprehensive results. In addition, the proposed DDNPNet model can 

act as a diagnosis reference for physicians and assist busy physicians 
in aided diagnosis. The advantages and limitations of this study are 
described in the following text.

The advantages of the models proposed in this study and the study 
overall are as follows:

The models used in this study do not require complicated manual 
feature extraction.

The proposed DDNPNet model operates automatically from the image 
input step to the classification output step.

The DDNPNet model provides high classification accuracy for the 
database obtained after integrating three databases (i.e., BMM database). 

DDNPNet requires the shortest training time among the compared 
models.

This study classified images from three common breast mammogram 
databases.

The limitations of this study are as follows:

The images of each category in DDNPNet were unbalanced.

The collected breast mammograms were obtained from Western 
European and American databases. Future studies can also apply the 
proposed models for the classification of the breast mass mammograms 
of Eastern individuals.

CONCLUSION
The AlexNet II and DDNPNet models proposed in this study 
exhibited high classification accuracies for the DDSM and the 
INbreast, MIAS, and BMM databases. The AlexNet II and 
DDNPNet models can extract numerous diverse features from 
images; therefore, these models can provide accuracies comparable 
to those of existing CNN methods.

This study makes two contributions. First, we used three common 
breast mammogram databases, namely the INbreast database, 
MIAS database, and DDSM, for research. We also integrated the 
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aforementioned three databases into the BMM database for breast 
mass classification. Second, in addition to using the existing CNN 
model, this study constructed the AlexNet II and DDNPNet models 
by using different dilation factors and replacing all the pooling 
layers with large-stride convolutional layers.

This study classified the breast mammograms of Western patients; 
however, differences exist in the body shapes of Western and 
Eastern individuals. Therefore, the proposed models may not be 
suitable to other races. Future studies can apply the proposed 
classification models to different breast cancer detection tools, 
such as breast ultrasound images, breast photomicrograph images, 
breast computed tomography images, and breast MRI images. 
Moreover, studies can continue to improve the architecture of the 
CNN model by using dilation factors and removing all the pooling 
layers to obtain superior classification accuracies. 
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