

Factors Predicting Survival Outcomes in Pregnancy-Associated Breast Cancer; A Systematic Review and Meta-Analysis

Ala Meshal Aljehani*

ABSTRACT

Pregnancy-associated breast cancer (PABC) is breast cancer that is diagnosed during gestation, post-partum, or any time during lactation. The present prognostic meta-analysis was executed to retrieve factors associated with survival outcomes among patients with PABC. The risk of death along with the risk of breast cancer recurrence was evaluated. The literature review was performed through twelve databases on 15th July 2024. All clinical studies included patients with PABC, and evaluated factors associated with survival outcomes were included. These studies have to implement the Cox regression model to calculate the hazard ratio (HR) for the time to relevant outcomes. The present meta-analysis included nine retrospective studies encompassing 9590 patients with PABC. The mortality risk was 14%, while the risk of breast cancer recurrence was 12.1%. Patients with Luminal B breast cancer was at 1.95 times higher risk of mortality. There was a statistically significant association ($P<0.001$) between clinical stage and overall survival with an HR of 3.74. There was a statistically significant association ($P<0.001$) between chemotherapy and overall survival (HR; 1.80, 95%CI; 1.50, 2.16). Patients with triple-negative breast cancer was 1.65 times at higher risk of poor survival outcomes. Patients with PABC were at a considerable risk of developing poor overall and disease-free survival outcomes. This risk was more pronounced among patients with luminal B breast cancer, patients with TNBC, patients with advanced tumor stage, and patients treated with chemotherapeutic agents.

Keywords: *Pregnancy, Breast Cancer, Prognosis, Survival*

INTRODUCTION

Breast cancer is the most common malignancy diagnosed among women during the childbearing period¹. The most common classification of breast cancer is based on immunohistochemical perspective. Four types of breast cancer are commonly identified including luminal A, luminal B, human epidermal growth factor (HER2) positive, and triple-negative breast cancer². Pregnancy-associated breast cancer (PABC) is breast cancer that is diagnosed during gestation, post-partum, or any time during lactation. PABC is the second most prevalent malignancy affecting pregnant women, with an incidence of nearly 15 to 35 per 100000 deliveries^{3,4}. PABC is mainly related to hormonal changes, immune tolerance, breast involution, significant oncogene expression, and inflammatory response associated with pregnancy⁵. Given the trend of childbearing delays and the increase in the worldwide incidence of breast cancer, the proportion of patients with PABC is increasing. The majority of cases are diagnosed during the post-partum period, and fewer are diagnosed during pregnancy. The diagnosis of PABC is often delayed due to the lack of awareness, denial of suspicious clinical manifestations, and the fear of undergoing radiological evaluation during pregnancy. Subsequently, the transient and permanent structural changes of the mammary tissue associated with gestation may mask the manifestations of PABC^{6,7}.

Pregnancy and the post-partum periods are extremely delicate intervals in a woman's life and have considerable psychological and functional aspects. This highlights the need to provide specific cancer care to pregnant women with an equal emphasis on fetal and maternal health. The aggressiveness of PABC is attributed to the young age at diagnosis, delayed diagnosis, advanced presentation, and pregnancy-associated hormonal changes. PABC has unfavorable clinicopathological features

with a high tumor grade, low expression of estrogen and progesterone receptors, larger tumor size, lymphovascular invasion, and lymph node involvement⁸⁻¹⁰. Furthermore, the treatment of PABC is challenging and may be delayed considering the safety of both the mother and her fetus^{11,12}. Chemotherapeutic agents are not advisable during the first trimester of pregnancy, whereas hormonal and radiation therapies are not recommended until after delivery¹³.

PABC may carry poor clinical and survival outcomes even after controlling variable clinicopathological features¹⁴. Patients with PABC may have a considerably higher mortality risk and significant risk of disease relapse relative to non-PABC patients^{15,16}. Paradoxically, some studies revealed that patients with PABC were not associated with poor prognostic outcomes until they had extremely aggressive tumors¹⁷⁻¹⁹. While pregnancy may temporarily increase the risk of breast cancer, it may decrease the risk of cancer in the long term²⁰. The assessment of survival outcomes among women with PABC is challenging. The majority of previously published studies are based on small cohorts, limited by the retrospective nature and the treatment protocols. Furthermore, the definition of PABC has varied considerably, resulting in heterogeneous results²¹.

The literature is doubtful regarding the survival outcomes of PABC. There were no conclusive reports evaluating factors associated with survival outcomes in patients with PABC^{22,23}. This highlighted the need for a conclusive report to estimate the demographic-related, tumor-related, and treatment-related factors that may predict survival outcomes in patients with PABC. Such knowledge is essential to assort patients at a higher risk of poor survival outcomes to the necessary management plan and to decrease the potential consequences of PABC

* Assistant Professor, Department of pathology,
College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU),
Riyadh 13317, Saudi Arabia.
E-mail: Amaljehani@imamu.edu.sa

on both mothers and their fetuses. Therefore, the present prognostic meta-analysis was executed to retrieve factors associated with survival outcomes among patients with PABC. The risk of death along with the risk of breast cancer recurrence was evaluated.

METHODOLOGY

The steps of the current systematic review and meta-analysis study followed the guidelines and the recommendations offered through the Cochrane Collaboration and Cochrane Handbook of Systematic Reviews and meta-analysis²⁴ and based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines²⁵.

The methodology of the study was documented in the International Prospective Register of Systematic Reviews database (PROSPERO) (Number; [CRD42024571148]).

Search Methods: The literature review was performed through twelve databases on 15th July 2024. The following databases were searched using individualized search strings customized for each database: PubMed, ISI, Google Scholar, Scopus, NYAM, SIGLE, VHL, Clinical trials, mRCT, Cochrane Collaboration, EMBASE, and ICTRP. There were no limitations regarding age, gender, publication language, ethnicity, or study region. Citation tracking, cross-referencing, and reviewing the references of the eligible articles were carried out to retrieve all possible relevant articles. The following keywords were used: 'Pregnancy', 'Gestational', 'Breast', 'Cancer', 'Survival', 'Survivability', 'Mortality', 'Prognosis', 'Death' (Supplementary Table 2).

Study selection: All clinical studies included patients with PABC, and evaluated factors associated with survival outcomes were included. These studies have to implement the Cox regression model to calculate the hazard ratio (HR) for the time to relevant outcomes. No restrictions were implemented for PABC stage, grade, type, differentiation, or diagnostic criteria. Furthermore, irrelevant articles, review articles, studies with unextractable data, guidelines, cadaveric articles, case reports, erratum, letters, case series, comments, editorials, meeting abstracts, book chapters, and posters were excluded. The title, abstract, and full-text screening processes were performed to disclose the potentially relevant articles that met the eligibility criteria. The articles retrieved from the screening process were exported to an Excel sheet after the initial removal of the duplicated reports using EndNote X9²⁶. The screening processes were performed to reveal the finally eligible studies for data extraction. The PRISMA flowchart was designed to document the searching process, screening, and the causes of article exclusion at each step of the literature review.

Data extraction: The data were extracted in a well-organized Microsoft Excel sheet. The source-related data were extracted, including the title, study ID, study regions, study period, and study design. The methods-related data were extracted, including the eligibility criteria, the diagnostic criteria for PABC, study endpoints, and follow-up periods. Baseline patients' demographic characteristics were extracted, including sample size, patients' age, age at pregnancy, body mass index (BMI), comorbidities, employment status, family history of breast cancer, marital status, multiparity, nulliparity, the number of trimesters, and weeks of pregnancy. The data relating to PABC were extracted, including the duration of symptoms, delayed diagnosis, laterality, tumor type, disease extent, tumor grade, tumor differentiation, tumor size, lymph node involvement, and hormonal status. The management-related data were extracted, including systematic therapies (chemotherapy, hormonal therapy, immune therapy, and radiotherapy)

and surgical management (Breast conserving surgery, mastectomies and breast reconstruction). The survival outcomes were evaluated, including disease-free survival, overall survival, mortality risk, and risk of breast cancer recurrence.

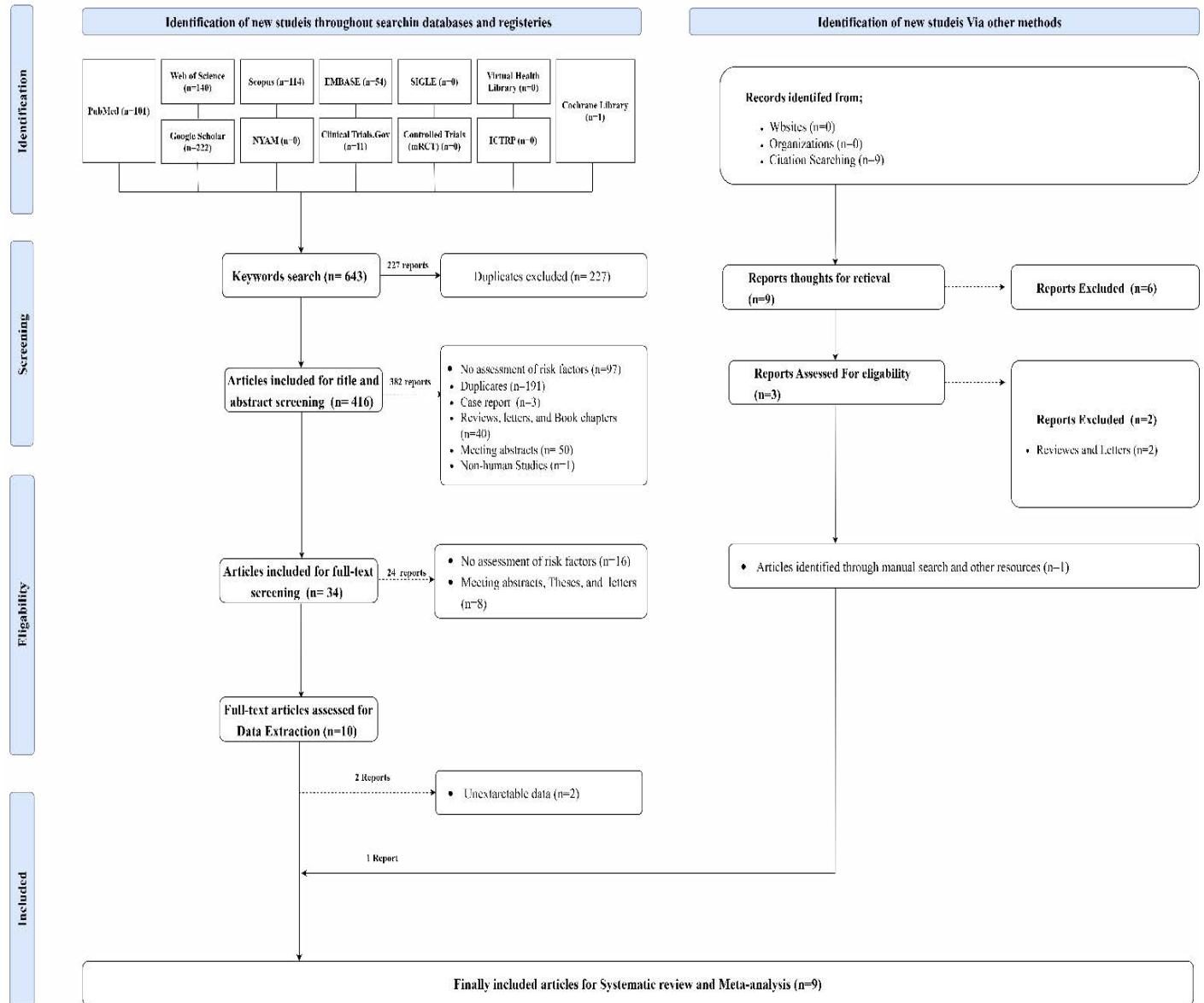
Quality assessment: The quality of the included observational studies was assessed using the National Institute of Health (NIH) quality assessment tool²⁷. The studies were assorted, based on this quality assessment, into good, fair, and bad when the score was >65%, 30-65%, and < 30%, respectively.

Data analysis: The mortality risk and the risk of recurrence were estimated by calculating the event rate and 95% confidence intervals (CIs) for each study following by pooling the effect sizes of all studies to estimate the summary proportion with 95%CI. The pooled summary of HR was computed by pooling the HR from all the relevant articles. The fixed-effect model was used when homogeneity between the effect sizes was revealed; conversely, the random-effects model was used. Statistical heterogeneity was determined using Higgins I^2 statistic, at the value of >50%, and the Cochrane Q (Chi^2 test), at the value of $p<0.10^{28}$. Meta-analysis was performed using Review Manager version 5.4 (Revman 5.4) and Comprehensive Meta-Analysis v3 (CMA V3) software^{29,30}. The significant associations with survival outcomes were revealed when the value of $P<0.05$.

RESULTS

A systematic search of 12 databases revealed a total of 643 articles. Of them, 227 were excluded, being duplicated, resulting in 416 studies eligible for screening. Furthermore, 380 reports were excluded, and 34 studies were included for full-text screening. Ten articles were eligible for data extraction; two with unextractable data were excluded. One study was identified through citation tracking, resulting in nine articles that were finally included for systematic review and meta-analysis Figure.1.

DEMOGRAPHIC CHARACTERISTICS OF THE INCLUDED STUDIES


The present meta-analysis included nine retrospective studies encompassing 9590 patients with PABC^{12,31-38}. The average age of the included patients ranged from 30 to 35 years. There were 103 patients with a family history of breast cancer. There were 2397 patients with stage I breast cancer, while 2245 patients had stage III breast cancer. There were 480 patients with stage IV breast cancer. Furthermore, 606 patients had poorly differentiated breast cancer. There were 982 patients with invasive ductal carcinoma, while 23 had invasive lobular carcinoma Table.1.

There were 106 patients with luminal A breast cancer and 244 with luminal B. There were 446 patients with TNBC and 102 patients with HER2-positive breast cancer. There were 2922 patients with ER-positive receptors and 2955 patients with PR-positive receptors. There were 2210 patients with lymph node invasion and 142 with metastatic lesions. Furthermore, 917 patients were subjected to mastectomy, 435 patients subjected to breast conserving surgery, and 7575 patients were treated with chemotherapy. The average follow-up period ranged from 47.5 months to 7.4 years. All the included studies were of good quality, with a score ranging from 80% to 90% Table.2.

FACTORS ASSOCIATED WITH OVERALL SURVIVAL

Age \geq 35

Six articles evaluated the association between age \geq 35 and the overall survival^{31-34,37,38}. In the random-effects model ($I^2=78\%$, $p=0.003$), there was no statistically significant association between age \geq 35 and overall

Figure 1. PRISMA 2020 flow diagram for updated systematic reviews which included searches of databases, registers, other sources, and screening.

survival ($P=0.20$) with an HR of 1.17 (95%CI; 0.92, 1.48) Figure.2A.

Luminal B

The association between Luminal B (HR+ HER+) and the overall survival among patients with PABC was evaluated within three articles^{34, 37, 38}. Patients with Luminal B (HR+ HER+) were at 1.95 times higher risk of mortality with a 95%CI of 1.22 to 3.11 ($P=0.005$) in the random-effects model ($I^2=0\%$, $P=0.38$) Figure.2B.

Triple-negative breast cancer

Three studies evaluated the association between triple-negative breast cancer and overall survival among patients with PABC^{34, 37, 38}. There was a statistically significant association between triple-negative breast cancer and overall survival with an HR of 1.65 (95%CI; 1.17, 2.32, $P=0.004$) in the random-effects model ($I^2=0\%$, $P=0.89$) Figure.2C.

HER2 subtype

The impact of HER2 subtype breast cancer on the overall survival among patients with PABC was reported in three studies^{34, 37, 38}. There

was no statistically significant ($P=0.08$) association between HER2 subtype breast cancer and overall survival with an HR of 4.29 (95%CI 0.83, 22.20) with heterogeneity between the analyzed articles ($I^2=89\%$, $P=0.0001$) Figure.2D.

ER Negative

Three studies evaluated the association between estrogen receptors negative breast cancer and overall survival among patients with PABC³¹⁻³³. In the random-effects model ($I^2=39\%$, $P=0.19$), there was no statistically significant association between estrogen receptors negative breast cancer and overall survival ($P=0.56$) with an HR of 0.81 (95%CI; 0.41, 1.62) Figure.2E.

Clinical stage

Seven studies evaluated the association between clinical stage and overall survival among patients with PABC^{12, 31, 34-38}. In the random-effects model ($I^2=28\%$, $P=0.21$), there was a statistically significant association ($P<0.001$) between clinical stage and overall survival with an HR of 3.74 and 95%CI hovered between 2.50 and 5.50 Figure.2F.

Table 1 Baseline demographic characteristics of the included studies

Study ID	Region	Study Design	Study Period	Defining of PABC	Sample Size	Age	Family History of breast cancer	Delivery < 30 years	Clinical Stage				Tumor Grade			Tumor Type			Mortality	Recurrence		
									0	I	II	III	IV	Well	Moderate	Poor	IDC	ILC	DCIS			
					Number	Mean±SD	Number	Number	Number	Number	Number	Number	Number	Number	Number	Number	Number	Number	Number			
1	Bae et al., 2018 ³⁴	Korea	Retrospective	January 1, 1996, to December 31, 2015	During pregnancy or within 1 year after delivery.	411	NR	50	175	NR	92	186	85	23	110	188	366	4	16	2	7	
2	Chuang et al., 2018 ³¹	Taiwan	Retrospective	2002 to 2014	During pregnancy	90	NR	NR	NR	24	51	15	NR	8	37	37	NR	NR	NR	NR	NR	
3	Gkekos et al., 2024 ³⁸	Norway	Retrospective	1992 and 2018	During pregnancy or within 24 months after delivery	1430	NR	NR	NR	24	58	73	4	4	25	79	NR	NR	NR	334	NR	
4	Gwak et al., 2022 ³⁷	Korea	Retrospective	1989 and 2014	During pregnancy or within 1 year after delivery.	410	NR	NR	NR	NR	92	93	202	23	32	113	207	387	5	NR	NR	NR
5	Iqbal et al., 2017 ³²	Canada	Retrospective	January 1, 2003, to December 31, 2014	conception from 11 months before, until 21 months after Diagnosis	7,553	NR	NR	NR	NR	2,082	3512	1,619	340	NR	NR	NR	NR	NR	975	NR	
6	Muñoz-Montaño et al., 2021 ³⁵	Mexico	Retrospective	January 2007 through June 2018	During pregnancy or within 12 months of delivery	125	35	NR	NR	NR	38	61	26	10	42	73	99	12	NR	NR	24	
7	Ramírez-Torres et al., 2023 ³³	Mexico	Retrospective	March 1992 and June 2010	During pregnancy or within 12 months of delivery	16	NR	3	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	7	3	
8	Sulemann et al., 2022 ³⁶	Netherlands	Retrospective	January 1st, 1988 and July 1st, 2019	During pregnancy or ≤ 6 months postdelivery were included	662	34.17±4.198	NR	NR	129	347	130	54	NR	NR	NR	NR	NR	NR	NR		
9	Wang et al., 2019 ¹²	China	Retrospective	1 January 2005 to 31 December 2015	During pregnancy or within 12 months of delivery	142	30 (24–44)	50	NR	NR	8	64	60	10	NR	54	22	130	2	NR	NR	38

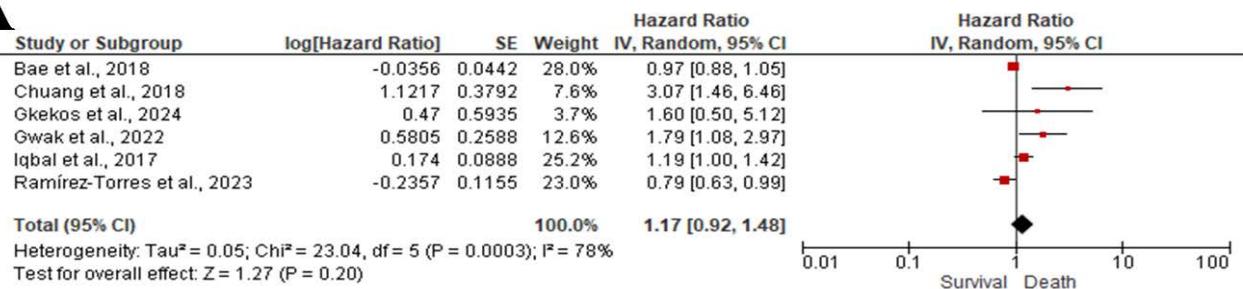
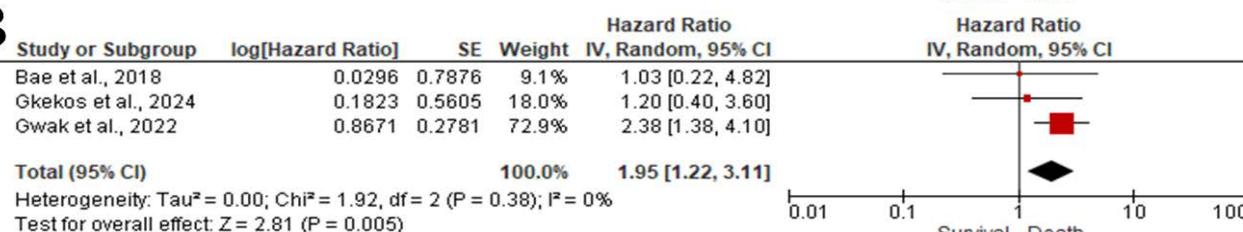
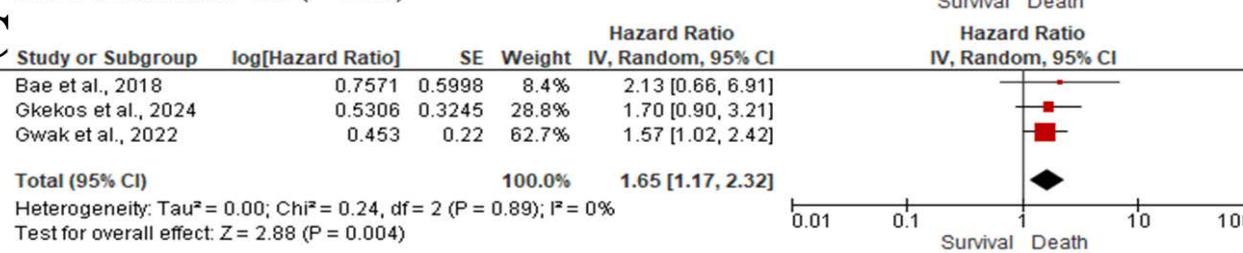
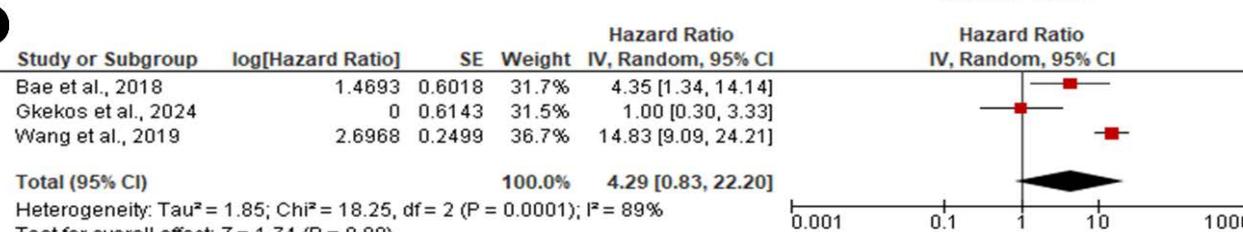

Abbreviations: IDC=Invasive ductal carcinoma, ILC=Invasive lobular carcinoma, DCIS=Ductal carcinoma in situ

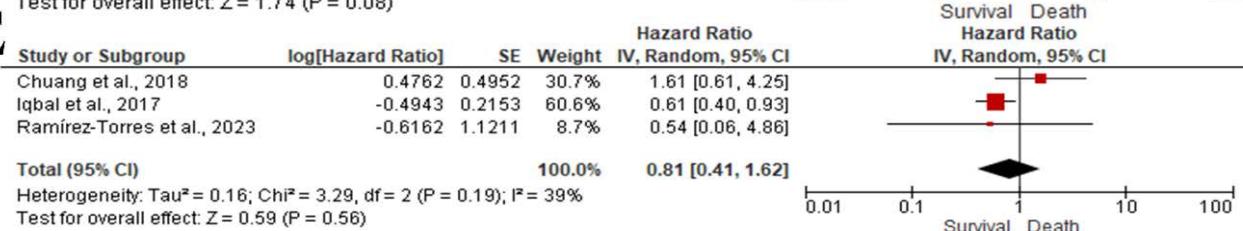
Table 2 Tumor characteristics and quality assessment of the included studies

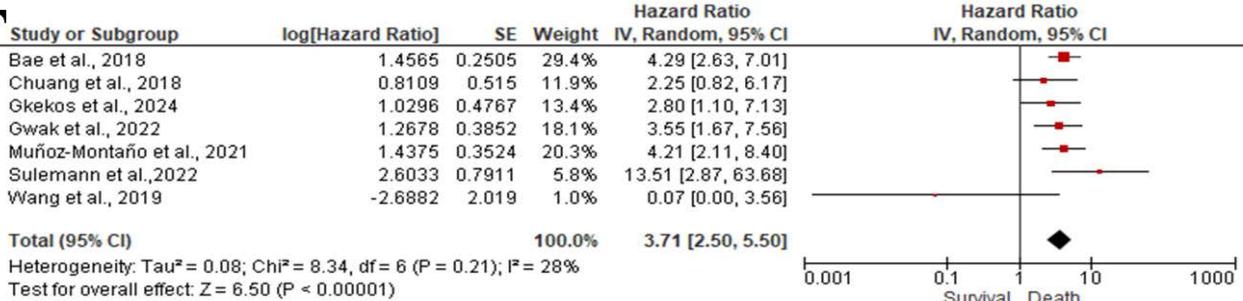

Study ID	Tumor subtypes				Hormonal Status						Surgical Interventions				Systemic Therapy				Follow-up period	Quality assessment
	Luminal A	Luminal B	TNBC	HER2	Luminal B (high Ki67)	ER status	PR status	HER2 status	Lymph node metastasis	Metastasis	Mastectomy	BCS	ALND	SLN	Chemotherapy	Radiotherapy	Hormonal Therapy			
	Number	Number	Number	Number	Number	Number	Number	Number	Number	Number	Number	Number	Number	Number	Number	Number	Number			
1 Bae et al., 2018 ³⁴	65	37	124	53	28	143	126	91	NR	NR	199	193	235	145	345	230	NR	53 months	90% Good	
2 Chuang et al., 2018 ³¹	NR	NR	NR	NR	NR	32	32	12	49	NR	52	31	NR	NR	67	42	45	4.28 (1.13, 10.9)	80% Good	
3 Gkekos et al., 2024 ³⁸	14	13	117	NR	NR	57	56	67	85	NR	NR	NR	NR	NR	NR	NR	NR	7.4 years	90% Good	
4 Gwak et al., 2022 ³⁷	17	128	173	49	NR	NR	NR	NR	NR	NR	199	211	NR	367	NR	150	87 months	80% Good		
5 Iqbal et al., 2017 ³²	NR	NR	NR	NR	NR	2,641	2438	NR	1,669	4	NR	NR	NR	NR	6,108	5598	NR	5.2 years	90% Good	
6 Muñoz-Montaña et al., 2021 ³⁵	NR	NR	NR	NR	NR	NR	NR	33	107	NR	NR	NR	NR	NR	NR	NR	NR	67.7 months (IQR 24.3, 100.3)	90% Good	
7 Ramírez-Torres et al., 2023 ³³	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	47.5 months (range: 0-81)	80% Good	
8 Sulemann et al., 2022 ³⁶	NR	NR	NR	NR	NR	227	133	218	52	467	NR	315	NR	562	NR	NR	NR	6.5 years (IQR 2.8– 13.6 years)	90% Good	
9 Wang et al., 2019 ¹²	10	66	32	NR	NR	76	76	42	82	86	NR	NR	NR	NR	126	78	64	63 months	80% Good	

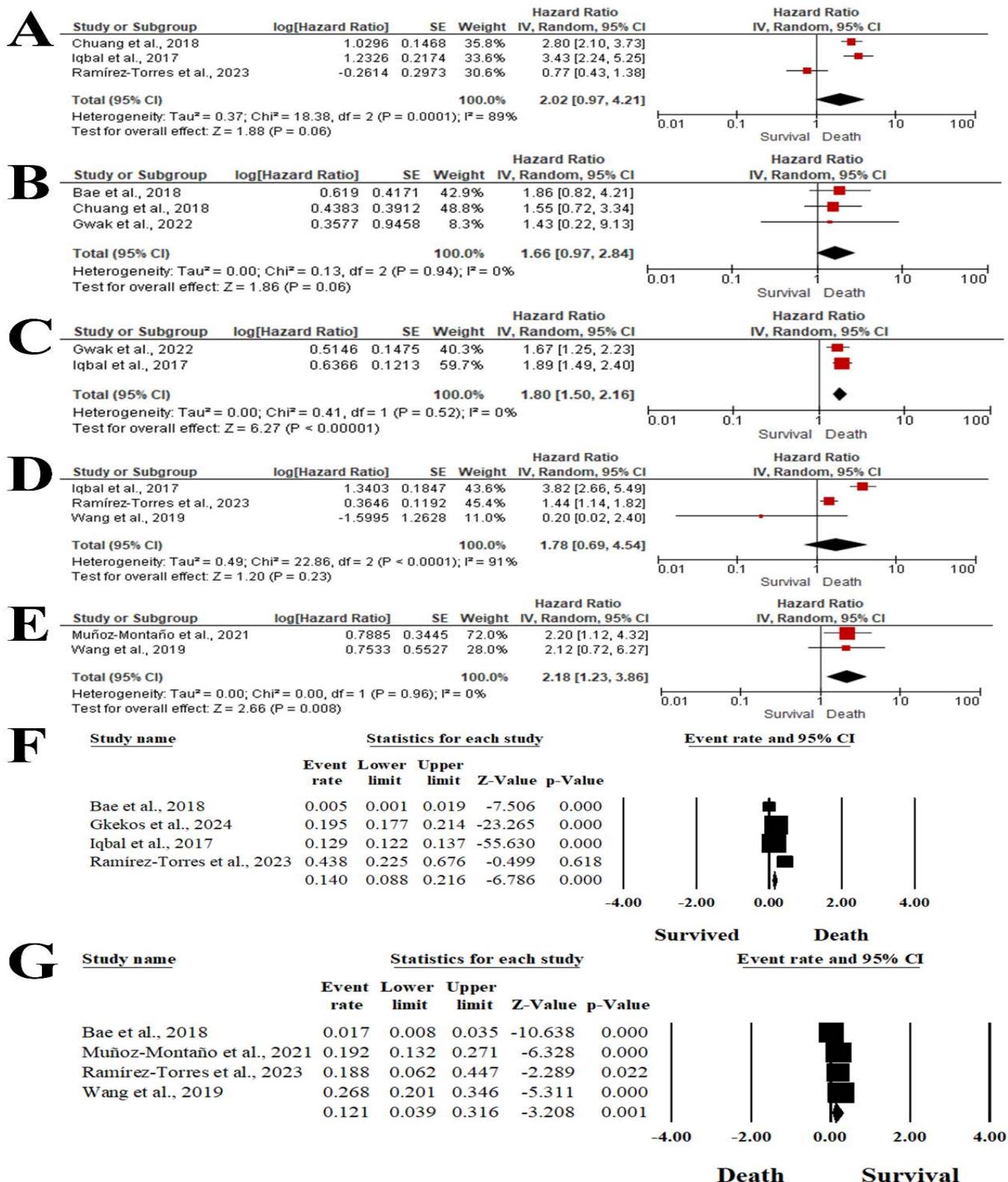
Abbreviations: TNBC= Triple Negative Breast Cancer, HER2= human epidermal growth factor receptor 2, ER=Estrogen, PR=Progesterone, BCS= Breast conserving surgery, ALND=Axillary Lymph node dissection, SLN=Sentinel Lymphnode


A


B


C


D


E

F

Figure 2. Forest plot of summary analysis of the hazard ratio and 95%CI of the association between (A) age ≥ 35 and the overall survival among patients with pregnancy-associated breast cancer. (B) Luminal B (HR+ HER+) and the overall survival among patients with pregnancy-associated breast cancer. (C) triple-negative breast cancer and overall survival among patients with pregnancy-associated breast cancer. (D) HER2 subtype breast cancer on the overall survival among patients with pregnancy-associated breast cancer. (E) Estrogen receptors negative breast cancer and overall survival among patients with pregnancy-associated breast cancer. (F) Clinical stage and overall survival among patients with pregnancy-associated breast cancer. Size of red squares is proportional to the statistical weight of each trial. The grey diamond represents the pooled point estimate. The positioning of both diamonds and squares (along with 95% CIs) beyond the vertical line (unit value) suggests a significant outcome (IV = inverse variance).

Figure 3. Forest plot of summary analysis of the hazard ratio and 95%CI of the association between (A) Tumour size and the overall survival among patients with pregnancy-associated breast cancer. (B) Histological grade and the overall survival among patients with pregnancy-associated breast cancer. (C) Chemotherapeutic agents and overall survival among patients with pregnancy-associated breast cancer. (D) Lymph node invasion cancer on the overall survival among patients with pregnancy-associated breast cancer. (E) Clinical stage and disease free survival among patients with pregnancy-associated breast cancer. (F) The event rate and 95%CI of the mortality risk among patients with pregnancy-associated breast cancer. (G) The event rate and 95%CI of the recurrence risk among patients with pregnancy-associated breast cancer. Size of red or black squares is proportional to the statistical weight of each trial. The grey diamond represents the pooled point estimate. The positioning of both diamonds and squares (along with 95% CIs) beyond the vertical line (unit value) suggests a significant outcome (IV = inverse variance).

Tumor size

The impact of tumor size on the overall survival among patients with PABC was evaluated within three studies³¹⁻³³. There was no statistically significant ($P=0.06$) impact of tumor size on the overall survival (HR; 2.02, 95%CI; 0.97, 4.21) in the random-effects model ($I^2=89\%$, $P<0.001$) Figure.3A.

Histological Grade

Three studies evaluated the association between histological grade and overall survival among patients with pregnancy-associated breast cancer^{31, 34, 37}. In the random-effects model ($I^2=0\%$, $P=0.94$), there was no statistically significant ($P=0.06$) association between histological grade and overall survival (HR; 1.66, 95%CI; 0.97, 2.84) Figure.3B.

Chemotherapy

Two studies evaluated the association between chemotherapy and overall survival among patients with pregnancy-associated breast cancer^{32, 37}. There was a statistically significant association ($P<0.001$) between chemotherapy and overall survival (HR; 1.80, 95%CI; 1.50, 2.16) in the random-effects model ($I^2=0\%$, $P=0.52$) Figure.3C.

Lymph node metastasis

Three studies evaluated the association between lymph node metastasis and overall survival among patients with pregnancy-associated breast cancer^{12, 32, 33}. There was no statistically significant association between lymph node metastasis and overall survival (HR; 1.78, 95%CI; 0.69, 4.54, $P=0.32$) in the random-effects model ($I^2=91\%$, $P<0.001$) Figure.3D.

FACTORS ASSOCIATED WITH DISEASE-FREE SURVIVAL

Clinical Stage

Two articles evaluated the association between clinical stage and disease-free survival among patients with pregnancy-associated breast cancer^{12, 35}. In the random-effects model ($I^2=91\%$, $P<0.001$), there was a statistically significant association between clinical stage ($P=0.008$) and disease-free survival with an HR of 2.18 (95%CI; 1.32, 3.86) Figure.3E.

The mortality risk and risk of breast cancer recurrence

Four articles evaluated the mortality risk among patients with pregnancy-associated breast cancer^{32-34, 38}. The mortality risk was 14%, with 95%CI ranging from 8.8% to 21.6% ($P<0.001$). The risk of breast cancer recurrence was reported in four articles^{12, 33-35}. The prevalence of tumor recurrence was 12.1% (95%CI; 3.9% to 31.6%, $P=0.001$) Figure.3F and 3G.

DISCUSSION

PABC is a complex challenge, necessitating precise diagnosis and timely management. Identifying patients with PABC at a higher risk of poor survival outcomes is essential to ensure the safety of both mother and fetus. The literature showed controversial findings regarding the prognosis of PABC with less emphasis on factors associated with survival outcomes among such patients^{22, 39}. The present meta-analysis revealed a mortality risk of 14%, along with cancer recurrence risk of 12.1% among patients with PABC. Patients with luminal B breast cancer, patients with TNBC, and patients treated with chemotherapeutic agents were at higher risk of poor survival outcomes. The risk of poor survival outcomes was more than three times higher among patients

with advanced tumor stage. There was no statistically significant impact of age ≥ 35 , HER2 subtype breast cancer, estrogen receptors negative breast cancer, tumor size, histological grade, and the risk of poor survival outcomes among patients with PABC.

The present meta-analysis revealed a considerable risk of death and cancer recurrence among patients with PABC. In this respect, Ruiz et al., 2017 reported a significant risk of death among patients with PABC relative to non-pregnant patients. They reported a risk of relapse 1.60 times higher among patients with PABC⁴⁰. Shao et al., 2020 reported poor overall survival, disease-free survival, and cause-specific survival among patients with PABC, which were more pronounced in the post-partum period¹⁵. The poor survival outcomes associated with PABC are attributed mainly to the delayed diagnosis and the hormonal changes that influence the biology of breast cancer⁴¹. Mammary gland involution and breast degeneration following pregnancy may explain the poor prognosis of PABC. The delayed diagnosis of PABC allowed more time for tumor growth and proliferation, enhancing the potentiality for locoregional invasion and metastasis. Herein, the majority of patients presented with advanced breast cancer stage an, which is proven in the current meta-analysis to increase the mortality risk by more than three times. Furthermore, pregnancy limited the treatment strategies and allowed only conservative and less invasive procedures to ensure the safety of the mother and fetus⁴²⁻⁴⁴. In this respect, Raphael et al., 2015 reported that PABC should be managed as aggressively as the guidelines applicable to nonpregnant women⁴⁵.

The decision to treat PABC requires a delicate balance between effective breast cancer treatment and maternal-fetal health. Therefore, the decision needed to be individualized considering tumor stage, subtype, hormonal status, and histological differentiation⁴⁶. The present meta-analysis revealed that patients with TNBC were at a higher risk of developing poor survival outcomes. However, there was no significant association between HER2 and ER-negative breast cancer and overall survival. Parallel with this finding, Nolan et al., 2022 revealed that ER receptor status did not considerably affect disease-free survival or hormonal treatment duration among patients who got pregnant after breast cancer⁴⁷. Bakhuis et al., 2021 reported a predominant ER and PR negative profile with over-expression of HER2 receptors among patients with PABC⁴⁸. They highlighted that PABC might be a separate entity with more aggressive behavior when compared to nonpregnant breast cancer patients.

The present study quantified factors associated with overall and disease-free survival among patients with PABC. However, the results of the current prognostic meta-analysis should be cautiously interpreted in the context of some limitations. The main limitation of the included studies is the need to standardize the definition of PABC and diagnostic criteria. This limitation and the difference in study design, clinical stage, grade, tumor size, and differentiation may result in significant heterogeneity between the analyzed predictors. All the included studies were retrospective, conveying a higher risk of information selection and reporting bias. Prospective cohort studies with adequate sample sizes and prolonged follow-up protocols are required to mitigate the limitations of the analyzed observational studies.

CONCLUSION

Patients with PABC were at a considerable risk of developing poor overall and disease-free survival outcomes. This risk was more pronounced among patients with luminal B breast cancer, patients with TNBC, patients with advanced tumor stage, and patients treated with chemotherapeutic agents. Such knowledge is essential to assort patients at higher risk of poor survival outcomes

to the necessary management plan and to decrease the potential consequences of PABC.

Authorship Contribution: All authors share equal effort contribution towards (1) substantial contributions to conception and design, acquisition, analysis and interpretation of data; (2) drafting the article and revising it critically for important intellectual content; and (3) final approval of the manuscript version to be published. Yes.

Potential Conflicts of Interest: None

Competing Interest: None

Acceptance Date: 04 August 2025

REFERENCE

1. Fidler MM, Gupta S, Soerjomataram I, et al. Cancer incidence and mortality among young adults aged 20–39 years worldwide in 2012: a population-based study. *The lancet oncol* 2017;18(12):1579-89.
2. Orrantia-Borunda E, Anchondo-Nuñez P, Acuña-Aguilar LE, et al. Subtypes of breast cancer. *Breast Cancer [Internet]*. 2022. <https://www.ncbi.nlm.nih.gov/books/NBK583808/>
3. Soto-Trujillo D, Aragón LNS, Kimura Y. Pregnancy-associated breast cancer: what radiologists must know. *Cureus* 2020;12(9).
4. Smith LH, Danielsen B, Allen ME, et al. Cancer associated with obstetric delivery: results of linkage with the California cancer registry. *Am J of Obstet and gynecol* 2003;189(4):1128-35.
5. Margioulia-Siarkou G, Margioulia-Siarkou C, Petousis S, et al. Breast carcinogenesis during pregnancy: molecular mechanisms, maternal and fetal adverse outcomes. *Biol* 2023;12(3):408.
6. Keyser EA, Staat BC, Fausett MB, et al. Pregnancy-associated breast cancer. *Rev in Obstet & Gynecol* 2012;5(2):94-9. <https://pubmed.ncbi.nlm.nih.gov/22866188/>
7. Galati F, Magri V, Arias-Cadena PA, et al. Pregnancy-Associated Breast Cancer: A Diagnostic and Therapeutic Challenge. *Diagnost* (Basel, Switzerland) 2023;13(4).
8. Middleton LP, Chen V, Perkins GH, et al. Histopathology of breast cancer among African-American women. *Cancer* 2003;97(S1):253-7.
9. Genin A-S, Lesieur B, Gligorov J, et al. Pregnancy-associated breast cancers: do they differ from other breast cancers in young women? *The breast* 2012;21(4):550-5.
10. Basaran D, Turgal M, Beksaç K, et al. Pregnancy-associated breast cancer: clinicopathological characteristics of 20 cases with a focus on identifiable causes of diagnostic delay. *Breast Care* 2014;9(5):355-9.
11. Zhang R, Liu X, Huang W, et al. Clinicopathological features and prognosis of patients with pregnancy-associated breast cancer: A matched case control study. *Asia-Pacific J of Clin Oncol* 2021;17(4):396-402.
12. Wang B, Yang Y, Jiang Z, et al. Clinicopathological characteristics, diagnosis, and prognosis of pregnancy-associated breast cancer. *Thoracic Cancer* 2019;10(5):1060-8.
13. Loibl S. New therapeutic options for breast cancer during pregnancy. *Breast Care* 2008;3(3):171-6.
14. Abubakar I. Preventing cancer and achieving optimal oncology outcomes in sub-Saharan Africa. *The Lancet Oncol* 2022;23(6):708-9.
15. Shao C, Yu Z, Xiao J, et al. Prognosis of pregnancy-associated breast cancer: a meta-analysis. *BMC cancer* 2020;20:1-15. <https://bmccancer.biomedcentral.com/articles/10.1186/s12885-020-07248-8>
16. Antonini M, Barros TT, Real JM, et al. Effects of clinical heterogeneity on Pregnancy-Associated Breast Cancer survival: a systematic review with meta-analysis. *Mastol (Impr)* 2022;1:1-11.
17. Johansson AL, Fredriksson I, Mellemkjaer L, et al. Cancer survival in women diagnosed with pregnancy-associated cancer: An overview using nationwide registry data in Sweden 1970–2018. *Eu J of Cancer* 2021;155:106-15.
18. Halaska MJ, Pentheroudakis G, Strnad P, et al. Presentation, management and outcome of 32 patients with pregnancy-associated breast cancer: a matched controlled study. *The breast J* 2009;15(5):461-7.
19. Ploquin A, Pistilli B, Tresch E, et al. 5-year overall survival after early breast cancer diagnosed during pregnancy: a retrospective case-control multicentre French study. *Eur J of Cancer* 2018;95:30-7.
20. Nichols HB, Schoemaker MJ, Cai J, et al. Breast cancer risk after recent childbirth: a pooled analysis of 15 prospective studies. *Ann of intern Med* 2019;170(1):22-30.
21. Galati F, Magri V, Arias-Cadena PA, et al. Pregnancy-associated breast cancer: a diagnostic and therapeutic challenge. *Diagn* 2023;13(4):604.
22. Schmitz TMV, Fritscher Junior PC, Kessler ILDS, et al. Breast cancer during pregnancy: epidemiology to prognosis: a systematic review. *Clinical and biomedical research Porto Alegre* 2021.
23. Korakiti A-M, Moutafi M, Zografos E, et al. The genomic profile of pregnancy-associated breast cancer: a systematic review. *Frontiers in Oncol* 2020;10:1773.
24. Higgins J, Thomas J, Chandler J, et al. Cochrane handbook for systematic reviews of interventions version 6.2 (updated February 2021). 2021. Cochrane Available at: www.training.cochrane.org/handbook [Access date June 3, 2021]. 2021.
25. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *BMJ* 2009;339.
26. Hupe M. EndNote X9. *Journal of Electronic Resources in Medical Libraries* 2019;16(3-4):117-9.
27. National Heart L, Institute B. National Institute of Health: Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. Bethesda Natl Heart Lung and Blood Inst; 2014.
28. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. *BMJ* 2003;327(7414):557.
29. Borenstein M, Hedges L, Higgins J, et al. Comprehensive meta-analysis V2 [Computer software and manual]. 2005;24:2007.
30. Cochrane Collaboration %J Copenhagen DTNCC, Cochrane Collaboration. Review manager (version 5.3)[computer software]. 2014.
31. Chuang SC, Lin CH, Lu YS, Hsiung CA. Association of pregnancy and mortality in women diagnosed with breast cancer: A Nationwide Population Based Study in Taiwan. *Int J of cancer* 2018;143(10):2416-24.
32. Iqbal J, Amir E, Rochon PA, et al. Association of the timing of pregnancy with survival in women with breast cancer. *JAMA Oncol* 2017;3(5):659-65.
33. Ramírez-Torres N, Rivas-Ruiz R, Reyes-López A. Breast Cancer in Pregnant Young Women: Clinicopathological Profile, Survival, and Pregnancy Outcomes. *Cureus* 2023;15(10).
34. Bae SY, Kim SJ, Lee J, et al. Clinical subtypes and prognosis of pregnancy-associated breast cancer: results from the Korean Breast Cancer Society Registry database. *Breast Cancer Res and Treat* 2018;172:113-21.
35. Muñoz-Montaño WR, Cabrera-Galeana P, De la Garza-Ramos C, et al. Prognosis of breast cancer diagnosed during pregnancy and early postpartum according to immunohistochemical subtype: a matched case-control study. *Breast Cancer Res and Treat* 2021;188(2):489-500.

36. Suelmann B, Bakhuis CF, van Dooijewert C, et al. Prognosis of pregnancy-associated breast cancer: inferior outcome in patients diagnosed during second and third gestational trimesters and lactation. *Breast Cancer Res and Treat* 2022;192(1):175-89.
37. Gwak H, Woo SS, Lee E-S, et al. Survival of women with pregnancy-associated breast cancer according to clinical characteristics: a propensity score matching study. *Med* 2022;101(40):e30831.
38. Gkekos L, Lundberg F, Humphreys K, et al. Worse histopathology and prognosis in women with breast cancer diagnosed during the second trimester of pregnancy. *ESMO open* 2024;9(4):102972.
39. Schotte K, Cocquyt V, Broecke RVd, et al. Breast cancer during pregnancy: cases and review of treatment and prognosis. *Acta Clinica Belgica* 2000;55(2):102-9.
40. Ruiz R, Herrero C, Strasser-Weippl K, et al. Epidemiology and pathophysiology of pregnancy-associated breast cancer: a review. *The Breast* 2017;35:136-41.
41. Azim Jr HA, Michiels S, Bedard PL, et al. Elucidating prognosis and biology of breast cancer arising in young women using gene expression profiling. *Clin cancer Res* 2012;18(5):1341-51.
42. Case AS. Pregnancy-associated breast cancer. *Clin obst and gynecol*. 2016;59(4):779-88.
43. Martinez MT, Bermejo B, Hernando C, et al. Breast cancer in pregnant patients: A review of the literature. *European J of Obstet & Gynecol and Reprod Biol* 2018;230:222-7.
44. O'Brien J, Lyons T, Monks J, et al. Alternatively activated macrophages and collagen remodeling characterize the postpartum involuting mammary gland across species. *The Am J of Pathol* 2010;176(3):1241-55.
45. Raphael J, Trudeau M, Chan K. Outcome of patients with pregnancy during or after breast cancer: a review of the recent literature. *Current Oncol* 2015;22(Suppl 1):S8.
46. Mumtaz A, Otey N, Afridi B, et al. Breast cancer in pregnancy: a comprehensive review of diagnosis, management, and outcomes. *Transl Breast Cancer Res* 2024;5. <https://pmc.ncbi.nlm.nih.gov/articles/PMC11342000/>
47. Nolan K, Boland MR, Hill AD. Pregnancy After Breast Cancer—Prognostic Safety and Pregnancy Outcomes According to Oestrogen Receptor Status: A Systematic Review. *J of Breast Cancer* 2022;25(6):443.
48. Bakhuis CF, Suelmann BB, van Dooijewert C, et al. Receptor status of breast cancer diagnosed during pregnancy: A literature review. *Critical Rev in Oncol/Hematol* 2021 Dec 1;168:103494.