Bahrain Medical Bulletin, Vol. 36, No. 1, March 2014

#### **Percutaneous Nephrolithotomy**

## Mohammed Abdulla Rafie, MD, CABS(Uro) FEBU\* Akbar A. Jalal, MBBS, CABS(Uro)\*\* Hasan Khudhur, MBBS\*\*\*

### ABSTRACT

**Objective:** To study the outcome of Percutaneous Nephrolithotomy (PCNL) procedures for renal stone management.

Setting: Urology Unit, Salmaniya Medical Complex, Bahrain.

**Design: Retrospective Study.** 

Method: Twenty-five patients who had PCNL from January 2011 to April 2013 were reviewed.

Result: Twenty-five patients were reviewed. Only one case had failed access. The majority of our patients were of young age group, a mean age of 39 years. Fifteen (60%) patients were diagnosed to have renal stone by the combination of KUB and IVP; most of the stone sizes were >2 cm, 21(87.5%). The overall stone clearance rate was 19 (76%) and the overall complications rate reported was 5 (20%).

Conclusion: This revealed good success rate and minimal acceptable complications. Based on our early experience, it is believed that the general experience of PCNL in SMC is adequate and should be considered as the first line of treatment for indicated renal stones.

- \* Consultant Urologist
- \*\* Specialist Urologist
- \*\*\* Senior Resident Urologist Department of Surgery Salmaniya Medical Complex Kingdom of Bahrain drakbarjalal@gmail.com

### **INTRODUCTION**

Renal stone could be a major health problem in some regions because of the size and recurrence<sup>1,2</sup>. Overall global prevalence of nephrolithiasis was 3.25% in the 1980s and 5.64 in the 1990s. In the United States, overall incidence increased during 1971 to 1978 and the rates among men are increasing compared to women<sup>1,2</sup>.

The aim of stone treatment is to be less invasive and effective. The management of stone disease has evolved since the introduction of extracorporeal shock wave lithotripsy (ESWL) and percutaneous nephrolithotomy  $(PCNL)^3$ .

Kidney percutaneous procedure access was first described in 1955. In 1973, the percutaneous access was used to remove kidney stones<sup>4</sup>. The improvements in the nephroscopes and the availability of new sets for stone disintegration techniques have paved the way to PCNL<sup>5</sup>.

The current management of large upper renal tract stones is evolving and PCNL is now considered an established technique as the first-line treatment for the removal of symptomatic large and complex kidney stones. Open stone surgery is now almost never used<sup>3,6,7</sup>.

The clinical research office of endourological society (PCNL study group) has agreed that the most important outcome is stone clearance rate, but currently there is no standardized method of reporting stone clearance rate. Several studies of staghorn stones treatment concluded that the PCNL is safe and a feasible method of treatment and with minimal complication<sup>6,8</sup>.

The aim of this study is to study the outcome of Percutaneous Nephrolithotomy procedures for renal stone management.

## METHOD

From January 2011 to April 2013, 25 patients with renal stone disease had PCNL procedures performed by a single surgeon in SMC. The patients were reviewed for age, sex, investigations, morphology, stone site, stone number, preoperative stone size, postoperative stone size, stone position, staghorn stones, preoperative antibiotic use, surgical approach, operative length, abandon procedure, postoperative complications, hospital stay and adjuvant therapy.

Data were entered and analyzed through SPSS version 17.

### RESULT

The majority of patients were >30 years of age, with the mean age of 39. Sixteen (64%) were males and 9 (36%) were females, see table 1.

| Variables                            | Number & percentage |  |  |
|--------------------------------------|---------------------|--|--|
| Total Patients                       | 25                  |  |  |
| Sex                                  |                     |  |  |
| Male                                 | 16 (64%)            |  |  |
| Female                               | 9 (36%)             |  |  |
| Age (mean)                           | ( <b>39</b> yrs)    |  |  |
| Hospital stay (mean) days            | 3-15 (6)            |  |  |
| <b>Operative time (mean) minutes</b> | 30 - 195 (118)      |  |  |

### Table 1: Personal Characteristic of Patients

Fifteen (60%) patients were diagnosed for renal stone by the combination of KUB and IVP. Ultrasound was performed in 5 (20%) as initial diagnostic tool for renal colic and renal stone disease. KUB and non-contrast CT scan was performed in 3 (12%) cases. Renogram was done for two (8%) patients to confirm the renal function prior to PCNL.

The stones were defined according to the size: large (>2cm) and small (<2cm). Twenty-two (88%) were >2cm and 3 (12.5%) were <2cm. Out of the 22 patients with large stones (>2cm), 8 were staghorn stones and 14 were non-staghorn. Single stone found in 15 (60%) compared to multiple stones in 10 (40%). Eighteen patients (72%) had right side renal stones, 5 (20%) had left side stones and 2 (8%) had bilateral stones. Out of these cases one patient had horseshoe kidney and another had duplex system.

Twelve (48%) stones were in the renal pelvis, 8 (32%) were in the lower calyx and 5 (20%) were of mixed combination; one patient had stone in a calyceal diverticulum, see table 2.

| Stone position & character | Number & Percentage |  |  |  |
|----------------------------|---------------------|--|--|--|
| Location                   |                     |  |  |  |
| Left                       | 5 (20%)             |  |  |  |
| Right                      | 18 (72%)            |  |  |  |
| Bilateral                  | 2 (8%)              |  |  |  |
| Size                       |                     |  |  |  |
| Large (> 2cm)              | 22 (88%)            |  |  |  |
| Staghorn                   | 8                   |  |  |  |
| Non-staghorn               | 14                  |  |  |  |
| Small (< 2cm)              | 3 (12%)             |  |  |  |
| Single Stone               | 15 (60%)            |  |  |  |
| Multiple Stone             | 10 (40%)            |  |  |  |
| Stone Position             |                     |  |  |  |
| Pelvic                     | 12 (48%)            |  |  |  |
| Lower Calyx                | 8 (32%)             |  |  |  |
| Mixed / Combination        | 5 (20%)             |  |  |  |

# Table 2: Stone Position and Characteristics

The oblique subcostal approach was the main access being performed. The specialty of person placing the tract was not recorded because in our practice the urologist performs all his own punctures. One procedure was abandoned due to failed access.

Overall complete stone clearance on first post-operative day was achieved in 19 (76%). The complete clearance for non-staghorn stones greater than 2 cm was achieved in 12 (48%). Staghorn calculi complete clearance was achieved in 4 (16%) cases. Complete clearance for stones <2 cm was achieved, see table 3.

| Stone Clearance Rate      | <b>Clearance Rate %</b> |
|---------------------------|-------------------------|
| Overall clearance rate    | 76%                     |
| Non-staghorn stones >2 cm | 48%                     |
| Staghorn calculi          | 16%                     |
| Stones <2 cm              | 100%                    |

| Table 3: Stone  | Clearance | Rate on  | First | Postoperative D  | av |
|-----------------|-----------|----------|-------|------------------|----|
| I dole et brome | cicaranee | Itale on |       | 1 obtoperative D | ~y |

Five patients out of the 25 had not cleared their stone. One patient was advised repeat PCNL, but he lost follow up and the remaining 4 patients underwent adjuvant therapy. Three patients (12%) underwent extra corporeal shock wave lithotripsy (ESWL) and ureteroscopy in 1 (4%) patient.

Prophylactic antibiotics were given in almost all cases for one day pre-operatively; midstream urine MSU was done pre-operatively for all patients, the incidence of postoperative fever was noted in 15% but no sepsis.

Two patients had intravenous antibiotics for ten days due to urinary tract infection with extended spectrum Beta Lactamase. One (4%) patient required post-operative transfusion.

The overall complication rate was 19%; however, there were no fatal or life-threatening complications.

# DISCUSSION

The management of large upper renal tract stones is evolving. In mid 1980s, less invasive treatment such as ESWL, URS and PCNL began to replace open surgery. Each has a role depending on several factors such as stone features, renal anatomy and patient characteristics. Improvement of endourologic instruments and lithotripsy devices has yielded greater success and lower complications rates for percutaneous renal surgery<sup>7</sup>.

Our results show that IVP and ultrasound were the two most common pre-operative investigations after plain X-ray KUB. Helical CT has replaced the traditional radiological investigation in kidney stone disease<sup>8</sup>. Most stones resided in the lower calyx or PUJ or both (80%) similar to the result found in other study<sup>9</sup>.

All renal access for PCNL was performed by the urologist; other studies showed that radiologist performed  $62\%^{10,11}$ . In a study, only 11% of urologist performed PCNL because of the lack of training and comfort level<sup>10,11</sup>. Our data would appear to support the current view in the literature that urologists can safely perform their own renal access<sup>10,11</sup>.

A nephrostomy was used for post-operative drainage in all cases. Others studies have concluded that postoperative tube placement is associated with less postoperative discomfort, less analgesic requirement and shorter hospital stay<sup>12</sup>. Other studies of nephrostomy-free PCNL have shown no evidence of an increase in major or minor complications<sup>12</sup>.

In our study the overall stone-free rate was 79.16%. This may be related to majority of our sample stone size which was more than 2 cm; our rate is higher than Maghraby et al and Singla et al after a single session  $(70\%)^{13,14}$ . In 1989, McDougal et al were the first to compare the outcome of PCNL with ESWL for lower calyx calculi; they found that PCNL was associated with higher stone-free rates than ESWL (86.2 % vs. 54.3%)<sup>15</sup>.

The mean operative time in our study was 118 minutes which is shorter than that reported by Kurtulus et al, 2.3 and 2.2 hours<sup>16</sup>.

In our study the overall complication rate was 19%. Singla et al reported the occurrence of hydrothorax in 7 patients and hemothorax in one<sup>17</sup>. Using the lower pole subcostal oblique approach for access, we believe that most of the significant complications could be avoided.

Because of the small number of procedures performed in our study, no firm conclusion can be made from the complication rate which could be encountered in large series<sup>18-21</sup>.

# CONCLUSION

Based on our study, it is believed that the general experience of PCNL in SMC is adequate; the success rate is 79.16% with minimal acceptable complications.

It is recommended that the patients should be informed about the available modalities of treatment, their efficacy and safety.

It is recommended as well to evaluate the current practice and outcome by applying the PCNL data registry for auditing purposes.

**Author contribution:** All authors share equal effort contribution towards (1) substantial contributions to conception and design, acquisition, analysis and interpretation of data; (2) drafting the article and revising it critically for important intellectual content; and (3) final approval of the manuscript version to be published. Yes

#### Potential conflicts of interest: None

Competing interest: None. Sponsorship: None.

Submission date: 31 December 2013 Acceptance date: 31 January 2014.

**Ethical approval:** Approved by the Surgical Department, Salmaniya Medical Center, MOH, Bahrain.

### REFERENCES

- 1. Scott R, Freeland R, Mowat W, et al. The Prevalence of Calcified Upper Urinary Tract Stone Disease in a Random Population-Cumbernauld Health Survey. Br J Urol. 1977; 49(7):589-95.
- 2. Sierakowski R, Finalayson B, Landes RR, et al. The Frequency of Urolithiasis in Hospital Discharge Diagnoses in the United States. Invest Urol 1978; 15(6):438-41.
- 3. De la Rosette J, Assimos D, Desai M, et al. The Clinical Research Office of the Endourological Society Percutaneous Nephrolithotomy Global Study: Indications, Complications, and Outcomes in 5803 Patients. J Endourol 2011; 25(1):11-7.
- 4. Knudsen BE. Second-look Nephroscopy after Percutaneous Nephrolithotomy. Therapeutic Advances in Urology; 2009; 1(1): 27-31.
- 5. Fernstrom I, Johansson B. Percutaneous Pyelolithotomy: A New Extraction Technique. Scand J Urol Nephrol 1976; 10(3): 257–9.
- 6. Osther PJ, Razvi H, Liatsikos E, et al. Percutaneous Nephrolithotomy among Patients with Renal Anomalies: Patient Characteristics and Outcomes; A Subgroup Analysis of the Clinical Research Office of the Endourological Society Global Percutaneous Nephrolithotomy Study. J Endourol 2011; 25(10):1627-32.
- Brian R. Matlaga, James E. Lingeman, Surgical Management of Upper Urinary Tract Calculi. In: Louis R. Kavoussi, Andrew C. Novick, Alan W. Partin, Craig A. Peters. Campbell – Walsh Urology, 10<sup>th</sup> Edition, Philadelphia: Elsevier Saunders, 2012: 1357-1410.
- 8. Armitage JN, Irving SO, Burgess NA. Percutaneous Nephrolithotomy in the United Kingdom: Results of a Prospective Data Registry. Eur Urol 2012; 61(6):1188-93.
- 9. Pearle MS, Watamull LM, Mullican MA. Sensitivity of Noncontrast Helical

Computerized Tomography and Plain Film Radiography Compared to Flexible Nephroscopy for Detecting Residual Fragments after Percutaneous Nephrostolithotomy. J Urol 1999; 162(1):23-6.

- 10. Wynberg J, et al. Flexible ureteroscopy-directed retrograde nephrostomy for percutaneous nephrolithotomy: description of a technique. J Endourol 2012; 26(10):1268-74.
- 11. Patel U, Walkden RM, Ghani KR, Anson K, Three dimensional CT Pyelography for Planning of Percutaneous Nephrolithotomy: Accuracy of Stone Measurement, Stone Depiction and Pelvicalyceal Reconstruction. Eur Radiol 2009; 19(5):1280-8.
- 12. Aron M, Goel R, Kesarwani PK, et al. Upper Pole Access for Complex Lower Pole Renal Calculi. BJU Int. 2004; 94(6):849-52.
- Albala DM, Assimos DG, Clayman RV, et al. Lower Pole I: A Prospective Randomized Trial of Extracorporeal Shock Wave Lithotripsy and Percutaneous Nephrostolithotomy for Lower Pole Nephrolithiasis-initial Results. J Urol 2001; 166(6):2072–80.
- 14. Lee CL, Anderson JK, Monga M. Residency Training in Percutaneous Renal Access: Does it Affect Urological Practice? J Urol 2004; 171(2):592-5.
- 15. Zilberman DE, Lipkin ME, de la Rosette JJ, et al. Tubeless Percutaneous Nephrolithotomy-The New Standard of Care? J Urol 2010; 184(4):1261–6.
- 16. Shalaby MM, Abdalla MA, Aboul-Ella HA, et al. Single Puncture Percutaneous Nephrolithomy for Management of Complex Renal Stones. BMC Res Notes 2009: 2:62. http://www.biomedcentral.com/1756-0500/2/62
- 17. Singla M, Srivastava A, Kapoor R, et al. Aggressive Approach to Staghorn Calculi-Safety and Efficacy of Multiple Tracts Percutaneous Nephrolithotomy. Urology 2008; 71(6):1039–42.
- 18. Kukreja R, Desai M, Patel S, et al. Factors Affecting Blood Loss during Percutaneous Nephrolithotomy: Prospective Study. J Endourol 2004; 18(8):715–22.
- 19. Hegarty NJ, Desai MM. Percutaneous Nephrolithotomy Requiring Multiple Tracts: Comparison of Morbidity with Single-tract Procedures. J Endourol 2006; 20(10):753–60.
- 20. Gremmo E, Ballanger P, Dore B, et al. Hemorrhagic Complications during Percutaneous Nephrolithotomy. Retrospective Studies of 772 cases. Prog Urol 1999; 9(3):460–3.
- 21. Michel MS, Trojan L, Rassweiler JJ. Complications in Percutaneous Nephrolithotomy. Eur Urol 2007; 51(4):899–906.